SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds
- URL: http://arxiv.org/abs/2506.18591v1
- Date: Mon, 23 Jun 2025 12:51:10 GMT
- Title: SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds
- Authors: Mauricio Byrd Victorica, György Dán, Henrik Sandberg,
- Abstract summary: SpaNN is an attack detector whose computational complexity is independent of the expected number of adversarial patches.<n>SpaNN does not rely on a fixed saliency threshold for identifying adversarial regions.<n>Our results show that SpaNN outperforms state-of-the-art defenses by up to 11 and 27 percentage points in the case of object detection and the case of image classification.
- Score: 10.97544978626829
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art convolutional neural network models for object detection and image classification are vulnerable to physically realizable adversarial perturbations, such as patch attacks. Existing defenses have focused, implicitly or explicitly, on single-patch attacks, leaving their sensitivity to the number of patches as an open question or rendering them computationally infeasible or inefficient against attacks consisting of multiple patches in the worst cases. In this work, we propose SpaNN, an attack detector whose computational complexity is independent of the expected number of adversarial patches. The key novelty of the proposed detector is that it builds an ensemble of binarized feature maps by applying a set of saliency thresholds to the neural activations of the first convolutional layer of the victim model. It then performs clustering on the ensemble and uses the cluster features as the input to a classifier for attack detection. Contrary to existing detectors, SpaNN does not rely on a fixed saliency threshold for identifying adversarial regions, which makes it robust against white box adversarial attacks. We evaluate SpaNN on four widely used data sets for object detection and classification, and our results show that SpaNN outperforms state-of-the-art defenses by up to 11 and 27 percentage points in the case of object detection and the case of image classification, respectively. Our code is available at https://github.com/gerkbyrd/SpaNN.
Related papers
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - AntidoteRT: Run-time Detection and Correction of Poison Attacks on
Neural Networks [18.461079157949698]
backdoor poisoning attacks against image classification networks.
We propose lightweight automated detection and correction techniques against poisoning attacks.
Our technique outperforms existing defenses such as NeuralCleanse and STRIP on popular benchmarks.
arXiv Detail & Related papers (2022-01-31T23:42:32Z) - Post-Training Detection of Backdoor Attacks for Two-Class and
Multi-Attack Scenarios [22.22337220509128]
Backdoor attacks (BAs) are an emerging threat to deep neural network classifiers.
We propose a detection framework based on BP reverse-engineering and a novel it expected transferability (ET) statistic.
arXiv Detail & Related papers (2022-01-20T22:21:38Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Detection of Iterative Adversarial Attacks via Counter Attack [4.549831511476249]
Deep neural networks (DNNs) have proven to be powerful tools for processing unstructured data.
For high-dimensional data, like images, they are inherently vulnerable to adversarial attacks.
In this work we outline a mathematical proof that the CW attack can be used as a detector itself.
arXiv Detail & Related papers (2020-09-23T21:54:36Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Miss the Point: Targeted Adversarial Attack on Multiple Landmark
Detection [29.83857022733448]
This paper is the first to study how fragile a CNN-based model on multiple landmark detection to adversarial perturbations.
We propose a novel Adaptive Targeted Iterative FGSM attack against the state-of-the-art models in multiple landmark detection.
arXiv Detail & Related papers (2020-07-10T07:58:35Z) - Detection as Regression: Certified Object Detection by Median Smoothing [50.89591634725045]
This work is motivated by recent progress on certified classification by randomized smoothing.
We obtain the first model-agnostic, training-free, and certified defense for object detection against $ell$-bounded attacks.
arXiv Detail & Related papers (2020-07-07T18:40:19Z) - Non-Intrusive Detection of Adversarial Deep Learning Attacks via
Observer Networks [5.4572790062292125]
Recent studies have shown that deep learning models are vulnerable to crafted adversarial inputs.
We propose a novel method to detect adversarial inputs by augmenting the main classification network with multiple binary detectors.
We achieve a 99.5% detection accuracy on the MNIST dataset and 97.5% on the CIFAR-10 dataset.
arXiv Detail & Related papers (2020-02-22T21:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.