NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments
- URL: http://arxiv.org/abs/2506.18689v1
- Date: Mon, 23 Jun 2025 14:28:30 GMT
- Title: NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments
- Authors: Alessandro Saviolo, Giuseppe Loianno,
- Abstract summary: We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation.<n>Rather than constructing a global map, NOVA formulates perception, estimation, and control entirely in the target's reference frame.<n>We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss.
- Score: 56.35569661650558
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Autonomous aerial target tracking in unstructured and GPS-denied environments remains a fundamental challenge in robotics. Many existing methods rely on motion capture systems, pre-mapped scenes, or feature-based localization to ensure safety and control, limiting their deployment in real-world conditions. We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation using only a stereo camera and an IMU. Rather than constructing a global map or relying on absolute localization, NOVA formulates perception, estimation, and control entirely in the target's reference frame. A tightly integrated stack combines a lightweight object detector with stereo depth completion, followed by histogram-based filtering to infer robust target distances under occlusion and noise. These measurements feed a visual-inertial state estimator that recovers the full 6-DoF pose of the robot relative to the target. A nonlinear model predictive controller (NMPC) plans dynamically feasible trajectories in the target frame. To ensure safety, high-order control barrier functions are constructed online from a compact set of high-risk collision points extracted from depth, enabling real-time obstacle avoidance without maps or dense representations. We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss and severe lighting changes that disrupt feature-based localization. Each experiment is repeated multiple times under similar conditions to assess resilience, showing consistent and reliable performance. NOVA achieves agile target following at speeds exceeding 50 km/h. These results show that high-speed vision-based tracking is possible in the wild using only onboard sensing, with no reliance on external localization or environment assumptions.
Related papers
- Benchmarking Vision-Based Object Tracking for USVs in Complex Maritime Environments [0.8796261172196743]
Vision-based target tracking is crucial for unmanned surface vehicles.<n>Real-time tracking in maritime environments is challenging due to dynamic camera movement, low visibility, and scale variation.<n>This study proposes a vision-guided object-tracking framework for USVs.
arXiv Detail & Related papers (2024-12-10T10:35:17Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.<n>We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.<n>We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
This paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions.
The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog.
The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset.
arXiv Detail & Related papers (2023-08-08T14:25:13Z) - Unsupervised Visual Odometry and Action Integration for PointGoal
Navigation in Indoor Environment [14.363948775085534]
PointGoal navigation in indoor environment is a fundamental task for personal robots to navigate to a specified point.
To improve the PointGoal navigation accuracy without GPS signal, we use visual odometry (VO) and propose a novel action integration module (AIM) trained in unsupervised manner.
Experiments show that the proposed system achieves satisfactory results and outperforms the partially supervised learning algorithms on the popular Gibson dataset.
arXiv Detail & Related papers (2022-10-02T03:12:03Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.