Temporal Neural Cellular Automata: Application to modeling of contrast enhancement in breast MRI
- URL: http://arxiv.org/abs/2506.18720v1
- Date: Mon, 23 Jun 2025 14:56:45 GMT
- Title: Temporal Neural Cellular Automata: Application to modeling of contrast enhancement in breast MRI
- Authors: Daniel M. Lang, Richard Osuala, Veronika Spieker, Karim Lekadir, Rickmer Braren, Julia A. Schnabel,
- Abstract summary: Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent.<n>Recent studies have demonstrated the feasibility of synthetic contrast generation.<n>Current state-of-the-art (SOTA) methods lack sufficient measures for consistent temporal evolution.<n>We introduce TeNCA, which extends and further refines NCAs to effectively model temporally sparse, non-uniformly sampled imaging data.
- Score: 4.181984443200153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent. This is particularly beneficial for breast imaging, where long acquisition times and high cost are significantly limiting the applicability of magnetic resonance imaging (MRI) as a widespread screening modality. Recent studies have demonstrated the feasibility of synthetic contrast generation. However, current state-of-the-art (SOTA) methods lack sufficient measures for consistent temporal evolution. Neural cellular automata (NCA) offer a robust and lightweight architecture to model evolving patterns between neighboring cells or pixels. In this work we introduce TeNCA (Temporal Neural Cellular Automata), which extends and further refines NCAs to effectively model temporally sparse, non-uniformly sampled imaging data. To achieve this, we advance the training strategy by enabling adaptive loss computation and define the iterative nature of the method to resemble a physical progression in time. This conditions the model to learn a physiologically plausible evolution of contrast enhancement. We rigorously train and test TeNCA on a diverse breast MRI dataset and demonstrate its effectiveness, surpassing the performance of existing methods in generation of images that align with ground truth post-contrast sequences.
Related papers
- HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models [33.7054351451505]
We propose a deep learning based approach for synthesizing hepatobiliary phase (HBP) images from earlier contrast phases.<n> Quantitative evaluation using pixel-wise and perceptual metrics, combined with blinded radiologist reviews, showed that pGAN achieved the best quantitative performance.<n>In contrast, the U-Net produced consistent liver enhancement with fewer artifacts, while DDPM underperformed due to limited preservation of fine structural details.
arXiv Detail & Related papers (2025-04-25T15:01:09Z) - Assessing the use of Diffusion models for motion artifact correction in brain MRI [0.6554326244334868]
We critically evaluate the use of diffusion models for correcting motion artifacts in 2D brain MRI scans.<n>We compare a diffusion model-based approach with state-of-the-art methods consisting of Unets trained in a supervised fashion on motion-affected images.<n>Our findings reveal mixed results: diffusion models can produce accurate predictions or generate harmful hallucinations in this context.
arXiv Detail & Related papers (2025-02-03T14:56:48Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Synthesizing Late-Stage Contrast Enhancement in Breast MRI: A Comprehensive Pipeline Leveraging Temporal Contrast Enhancement Dynamics [0.3499870393443268]
This study presents a pipeline for synthesizing late-phase DCE-MRI images from early-phase data.<n>The proposed approach introduces a novel loss function, Time Intensity Loss (TI-loss), leveraging the temporal behavior of contrast agents to guide the training of a generative model.<n>Two metrics are proposed to evaluate image quality: the Contrast Agent Pattern Score ($mathcalCP_s$), which validates enhancement patterns in annotated regions, and the Average Difference in Enhancement ($mathcalED$), measuring differences between real and generated enhancements.
arXiv Detail & Related papers (2024-09-03T04:31:49Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called Timestep-Aware Diffusion Model (TADM) for extreme image rescaling.<n>TADM performs rescaling operations in the latent space of a pre-trained autoencoder.<n>It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models [2.8981737432963506]
We propose a latent diffusion model capable of acquisition time-conditioned image synthesis of DCE-MRI temporal sequences.
Our results demonstrate our method's ability to generate realistic multi-sequence fat-saturated breast DCE-MRI.
arXiv Detail & Related papers (2024-03-20T18:01:57Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.