ASP2LJ : An Adversarial Self-Play Laywer Augmented Legal Judgment Framework
- URL: http://arxiv.org/abs/2506.18768v1
- Date: Wed, 11 Jun 2025 06:55:40 GMT
- Title: ASP2LJ : An Adversarial Self-Play Laywer Augmented Legal Judgment Framework
- Authors: Ao Chang, Tong Zhou, Yubo Chen, Delai Qiu, Shengping Liu, Kang Liu, Jun Zhao,
- Abstract summary: Legal Judgment Prediction (LJP) aims to predict judicial outcomes, including relevant legal charge, terms, and fines.<n>Current datasets, derived from authentic cases, suffer from high human annotation costs and imbalanced distributions.<n>We propose an Adversarial Self-Play Lawyer Augmented Legal Judgment Framework, called ASP2LJ.<n>Our framework enables a judge to reference evolved lawyers' arguments, improving the objectivity, fairness, and rationality of judicial decisions.
- Score: 21.003203706712643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal Judgment Prediction (LJP) aims to predict judicial outcomes, including relevant legal charge, terms, and fines, which is a crucial process in Large Language Model(LLM). However, LJP faces two key challenges: (1)Long Tail Distribution: Current datasets, derived from authentic cases, suffer from high human annotation costs and imbalanced distributions, leading to model performance degradation. (2)Lawyer's Improvement: Existing systems focus on enhancing judges' decision-making but neglect the critical role of lawyers in refining arguments, which limits overall judicial accuracy. To address these issues, we propose an Adversarial Self-Play Lawyer Augmented Legal Judgment Framework, called ASP2LJ, which integrates a case generation module to tackle long-tailed data distributions and an adversarial self-play mechanism to enhance lawyers' argumentation skills. Our framework enables a judge to reference evolved lawyers' arguments, improving the objectivity, fairness, and rationality of judicial decisions. Besides, We also introduce RareCases, a dataset for rare legal cases in China, which contains 120 tail-end cases. We demonstrate the effectiveness of our approach on the SimuCourt dataset and our RareCases dataset. Experimental results show our framework brings improvements, indicating its utilization. Our contributions include an integrated framework, a rare-case dataset, and publicly releasing datasets and code to support further research in automated judicial systems.
Related papers
- A Data Science Approach to Calcutta High Court Judgments: An Efficient LLM and RAG-powered Framework for Summarization and Similar Cases Retrieval [2.359291431338925]
This research presents a framework to analyze Calcutta High Court verdicts.<n>By fine-tuning the Pegasus model, we achieve significant improvements in the summarization of legal cases.<n>The RAG-powered framework efficiently retrieves similar cases in response to user queries, offering thorough overviews and summaries.
arXiv Detail & Related papers (2025-06-28T20:24:34Z) - RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - AppealCase: A Dataset and Benchmark for Civil Case Appeal Scenarios [47.83822985839837]
We present the AppealCase dataset, consisting of 10,000 pairs of real-world, matched first-instance and second-instance documents across 91 categories of civil cases.<n>The dataset also includes detailed annotations along five dimensions central to appellate review: judgment reversals, reversal reasons, cited legal provisions, claim-level decisions, and whether there is new information in the second instance.<n> Experimental results reveal that all current models achieve less than 50% F1 scores on the judgment reversal prediction task, highlighting the complexity and challenge of the appeal scenario.
arXiv Detail & Related papers (2025-05-22T10:50:33Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.<n>Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.<n>Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - Beyond Borders: Investigating Cross-Jurisdiction Transfer in Legal Case Summarization [2.9612936741643705]
We explore the cross-jurisdictional generalizability of legal case summarization models.
Specifically, we explore how to effectively summarize legal cases of a target jurisdiction where reference summaries are not available.
arXiv Detail & Related papers (2024-03-28T11:18:31Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset [20.315416393247247]
We introduce LeCaRDv2, a large-scale Legal Case Retrieval dataset (version 2).
It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents.
We enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure.
It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law.
arXiv Detail & Related papers (2023-10-26T17:32:55Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.