RAG-6DPose: Retrieval-Augmented 6D Pose Estimation via Leveraging CAD as Knowledge Base
- URL: http://arxiv.org/abs/2506.18856v1
- Date: Mon, 23 Jun 2025 17:19:41 GMT
- Title: RAG-6DPose: Retrieval-Augmented 6D Pose Estimation via Leveraging CAD as Knowledge Base
- Authors: Kuanning Wang, Yuqian Fu, Tianyu Wang, Yanwei Fu, Longfei Liang, Yu-Gang Jiang, Xiangyang Xue,
- Abstract summary: We present RAG-6DPose, a retrieval-augmented approach that leverages 3D CAD models as a knowledge base.<n> Experimental results on standard benchmarks and real-world robotic tasks demonstrate the effectiveness and robustness of our approach.
- Score: 112.72361202480154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 6D pose estimation is key for robotic manipulation, enabling precise object localization for tasks like grasping. We present RAG-6DPose, a retrieval-augmented approach that leverages 3D CAD models as a knowledge base by integrating both visual and geometric cues. Our RAG-6DPose roughly contains three stages: 1) Building a Multi-Modal CAD Knowledge Base by extracting 2D visual features from multi-view CAD rendered images and also attaching 3D points; 2) Retrieving relevant CAD features from the knowledge base based on the current query image via our ReSPC module; and 3) Incorporating retrieved CAD information to refine pose predictions via retrieval-augmented decoding. Experimental results on standard benchmarks and real-world robotic tasks demonstrate the effectiveness and robustness of our approach, particularly in handling occlusions and novel viewpoints. Supplementary material is available on our project website: https://sressers.github.io/RAG-6DPose .
Related papers
- FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.<n>Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
arXiv Detail & Related papers (2025-02-17T18:54:05Z) - Img2CAD: Conditioned 3D CAD Model Generation from Single Image with Structured Visual Geometry [12.265852643914439]
We present Img2CAD, the first knowledge that uses 2D image inputs to generate editable parameters.
Img2CAD enables seamless integration between AI 3D reconstruction and CAD representation.
arXiv Detail & Related papers (2024-10-04T13:27:52Z) - Img2CAD: Reverse Engineering 3D CAD Models from Images through VLM-Assisted Conditional Factorization [12.12975824816803]
Reverse engineering 3D computer-aided design (CAD) models from images is an important task for many downstream applications.
In this work, we introduce a novel approach that conditionally factorizes the task into two sub-problems.
We propose TrAssembler that conditioned on the discrete structure with semantics predicts the continuous attribute values.
arXiv Detail & Related papers (2024-07-19T06:53:30Z) - DiffCAD: Weakly-Supervised Probabilistic CAD Model Retrieval and Alignment from an RGB Image [34.47379913018661]
We propose DiffCAD, the first weakly-supervised probabilistic approach to CAD retrieval and alignment from an RGB image.
We formulate this as a conditional generative task, leveraging diffusion to learn implicit probabilistic models capturing the shape, pose, and scale of CAD objects in an image.
Our approach is trained only on synthetic data, leveraging monocular depth and mask estimates to enable robust zero-shot adaptation to various real target domains.
arXiv Detail & Related papers (2023-11-30T15:10:21Z) - Multiview Compressive Coding for 3D Reconstruction [77.95706553743626]
We introduce a simple framework that operates on 3D points of single objects or whole scenes.
Our model, Multiview Compressive Coding, learns to compress the input appearance and geometry to predict the 3D structure.
arXiv Detail & Related papers (2023-01-19T18:59:52Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - ROCA: Robust CAD Model Retrieval and Alignment from a Single Image [22.03752392397363]
We present ROCA, a novel end-to-end approach that retrieves and aligns 3D CAD models from a shape database to a single input image.
experiments on challenging, real-world imagery from ScanNet show that ROCA significantly improves on state of the art, from 9.5% to 17.6% in retrieval-aware CAD alignment accuracy.
arXiv Detail & Related papers (2021-12-03T16:02:32Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image.
We present Mask2CAD, which jointly detects objects in real-world images and for each detected object, optimize for the most similar CAD model and its pose.
This produces a clean, lightweight representation of the objects in an image.
arXiv Detail & Related papers (2020-07-26T00:08:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.