CommVQ: Commutative Vector Quantization for KV Cache Compression
- URL: http://arxiv.org/abs/2506.18879v1
- Date: Mon, 23 Jun 2025 17:50:11 GMT
- Title: CommVQ: Commutative Vector Quantization for KV Cache Compression
- Authors: Junyan Li, Yang Zhang, Muhammad Yusuf Hassan, Talha Chafekar, Tianle Cai, Zhile Ren, Pengsheng Guo, Foroozan Karimzadeh, Colorado Reed, Chong Wang, Chuang Gan,
- Abstract summary: We propose Commutative Vector Quantization (CommVQ) to significantly reduce memory usage for long-context LLM inference.<n>We first introduce additive quantization with a lightweight encoder and codebook to compress the KV cache.<n>Our approach achieves high accuracy with additive quantization and low overhead via the RoPE-commutative codebook.
- Score: 50.37946553931796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly used in applications requiring long context lengths, but the key-value (KV) cache often becomes a memory bottleneck on GPUs as context grows. To address this, we propose Commutative Vector Quantization (CommVQ) to significantly reduce memory usage for long-context LLM inference. We first introduce additive quantization with a lightweight encoder and codebook to compress the KV cache, which can be decoded via simple matrix multiplication. To further reduce computational costs during decoding, we design the codebook to be commutative with Rotary Position Embedding (RoPE) and train it using an Expectation-Maximization (EM) algorithm. This enables efficient integration of decoding into the self-attention mechanism. Our approach achieves high accuracy with additive quantization and low overhead via the RoPE-commutative codebook. Experiments on long-context benchmarks and GSM8K show that our method reduces FP16 KV cache size by 87.5% with 2-bit quantization, while outperforming state-of-the-art KV cache quantization methods. Notably, it enables 1-bit KV cache quantization with minimal accuracy loss, allowing a LLaMA-3.1 8B model to run with a 128K context length on a single RTX 4090 GPU. The source code is available at: https://github.com/UMass-Embodied-AGI/CommVQ.
Related papers
- SpeCache: Speculative Key-Value Caching for Efficient Generation of LLMs [44.41154292836592]
We propose SpeCache, which offloads the complete KV cache and dynamically fetches KV pairs back in each decoding step.<n> Experiments on LongBench and Needle-in-a-Haystack benchmarks verify that SpeCache effectively reduces VRAM usage.
arXiv Detail & Related papers (2025-03-20T14:01:56Z) - CalibQuant: 1-Bit KV Cache Quantization for Multimodal LLMs [45.77132019859689]
CalibQuant is a visual quantization strategy that drastically reduces both memory and computational overhead.<n>We achieve a 10x throughput increase on InternVL models.
arXiv Detail & Related papers (2025-02-15T05:08:01Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
Large Language Models (LLMs) are increasingly being deployed on edge devices for long-context settings.<n>In these scenarios, the Key-Value ( KV) cache is the primary bottleneck in terms of both GPU memory and latency.<n>We propose a novel self-speculative decoding framework, QuantSpec, where the draft model shares the architecture of the target model but employs a hierarchical 4-bit quantized KV cache and 4-bit quantized weights for acceleration.
arXiv Detail & Related papers (2025-02-05T20:43:48Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - QJL: 1-Bit Quantized JL Transform for KV Cache Quantization with Zero Overhead [10.067037913589175]
Serving LLMs requires substantial memory due to the storage requirements of Key-Value embeddings in the KV cache.
Traditional quantization methods face significant memory overhead due to the need to store quantization constants.
We introduce QJL, a new quantization approach that consists of a Johnson-Lindenstrauss transform followed by sign-bit quantization.
arXiv Detail & Related papers (2024-06-05T17:42:05Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
Key-value( KV) caching is an important technique to accelerate the inference of large language models.
Existing methods often compromise precision or require extra data for calibration.
We introduce textbfDecoQuant, a novel data-free low-bit quantization technique based on tensor decomposition methods.
arXiv Detail & Related papers (2024-05-21T08:35:10Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMs are seeing growing use for applications which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference.<n> Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in sub-4-bit precision.<n>Our work, KVQuant, facilitates low precision KV cache quantization by incorporating several novel methods.
arXiv Detail & Related papers (2024-01-31T18:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.