PrITTI: Primitive-based Generation of Controllable and Editable 3D Semantic Scenes
- URL: http://arxiv.org/abs/2506.19117v1
- Date: Mon, 23 Jun 2025 20:47:18 GMT
- Title: PrITTI: Primitive-based Generation of Controllable and Editable 3D Semantic Scenes
- Authors: Christina Ourania Tze, Daniel Dauner, Yiyi Liao, Dzmitry Tsishkou, Andreas Geiger,
- Abstract summary: Large-scale 3D semantic scene generation has predominantly relied on voxel-based representations.<n> primitives represent semantic entities using compact, coarse 3D structures that are easy to manipulate and compose.<n>PrITTI is a latent diffusion-based framework that leverages primitives as the main foundational elements for generating compositional, controllable, and editable scene layouts.
- Score: 30.417675568919552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale 3D semantic scene generation has predominantly relied on voxel-based representations, which are memory-intensive, bound by fixed resolutions, and challenging to edit. In contrast, primitives represent semantic entities using compact, coarse 3D structures that are easy to manipulate and compose, making them an ideal representation for this task. In this paper, we introduce PrITTI, a latent diffusion-based framework that leverages primitives as the main foundational elements for generating compositional, controllable, and editable 3D semantic scene layouts. Our method adopts a hybrid representation, modeling ground surfaces in a rasterized format while encoding objects as vectorized 3D primitives. This decomposition is also reflected in a structured latent representation that enables flexible scene manipulation of ground and object components. To overcome the orientation ambiguities in conventional encoding methods, we introduce a stable Cholesky-based parameterization that jointly encodes object size and orientation. Experiments on the KITTI-360 dataset show that PrITTI outperforms a voxel-based baseline in generation quality, while reducing memory requirements by up to $3\times$. In addition, PrITTI enables direct instance-level manipulation of objects in the scene and supports a range of downstream applications, including scene inpainting, outpainting, and photo-realistic street-view synthesis.
Related papers
- Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning [27.872834485482276]
3D indoor scene synthesis is vital for embodied AI and digital content creation.<n>Existing methods fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions.<n>We introduce Direct, a framework that directly generates numerical 3D layouts from text descriptions.
arXiv Detail & Related papers (2025-06-05T17:59:42Z) - Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations [112.29763628638112]
Object-X is a versatile multi-modal 3D representation framework.<n>It can encoding rich object embeddings and decoding them back into geometric and visual reconstructions.<n>It supports a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization.
arXiv Detail & Related papers (2025-06-05T09:14:42Z) - CasaGPT: Cuboid Arrangement and Scene Assembly for Interior Design [35.11283253765395]
We present a novel approach for indoor scene synthesis, which learns to arrange decomposed cuboid primitives to represent 3D objects within a scene.<n>Our approach, coined CasaGPT for Cuboid Arrangement and Scene Assembly, employs an autoregressive model to sequentially arrange cuboids, producing physically plausible scenes.
arXiv Detail & Related papers (2025-04-28T04:35:04Z) - HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation [50.206100327643284]
HiScene is a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation.<n>We generate 3D content that aligns with 2D representations while maintaining compositional structure.
arXiv Detail & Related papers (2025-04-17T16:33:39Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.<n>voxelization infers per-object occupancy probabilities at individual spatial locations.<n>Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting [57.14748263512924]
CG3D is a method for compositionally generating scalable 3D assets.
Gamma radiance fields, parameterized to allow for compositions of objects, possess the capability to enable semantically and physically consistent scenes.
arXiv Detail & Related papers (2023-11-29T18:55:38Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation.
We propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation.
Our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks.
arXiv Detail & Related papers (2020-03-31T09:33:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.