RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1
- URL: http://arxiv.org/abs/2506.19235v1
- Date: Tue, 24 Jun 2025 01:39:34 GMT
- Title: RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1
- Authors: Yu Xie, Xingkai Ren, Ying Qi, Yao Hu, Lianlei Shan,
- Abstract summary: This paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs)<n> RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty.
- Score: 20.92548890511589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional recommendation systems often grapple with "filter bubbles", underutilization of external knowledge, and a disconnect between model optimization and business policy iteration. To address these limitations, this paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs) and drawing inspiration from the DeepSeek R1 methodology. The framework initiates by transforming user profiles, historical interactions, and multi-faceted item attributes into LLM-interpretable natural language prompts through a carefully engineered data construction process. Subsequently, a two-stage training paradigm is employed: the initial stage involves Supervised Fine-Tuning (SFT) to imbue the LLM with fundamental recommendation capabilities. The subsequent stage utilizes Group Relative Policy Optimization (GRPO), a reinforcement learning technique, augmented with a Chain-of-Thought (CoT) mechanism. This stage guides the model through multi-step reasoning and holistic decision-making via a flexibly defined reward function, aiming to concurrently optimize recommendation accuracy, diversity, and other bespoke business objectives. Empirical evaluations on a real-world user behavior dataset from a large-scale social media platform demonstrate that RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty. It effectively mitigates the filter bubble effect and presents a promising avenue for the integrated optimization of recommendation models and policies under intricate business goals.
Related papers
- Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation [83.21140655248624]
Large language models (LLMs) have been introduced into recommender systems (RSs)<n>We propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space.<n> Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines.
arXiv Detail & Related papers (2025-05-22T15:49:38Z) - SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged history-Resampling Policy optimization surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.<n>We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
arXiv Detail & Related papers (2025-04-19T13:06:03Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment [45.45508377432791]
This paper introduces Reward-Aware Preference Optimization (RPO), a mathematical framework that unifies popular preference optimization techniques.<n>RPO provides a structured approach to disentangle and systematically study the impact of various design choices.<n>We propose a new experimental setup that enables the clean and direct ablation of such design choices.
arXiv Detail & Related papers (2025-01-31T22:39:04Z) - Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning [16.10753846850319]
Continual learning allows models to persistently acquire and retain information.<n> catastrophic forgetting can severely impair model performance.<n>We introduce a novel framework termed Optimally-Weighted Mean Discrepancy (OWMMD), which imposes penalties on representation alterations.
arXiv Detail & Related papers (2025-01-21T13:33:45Z) - Adaptive Augmentation Policy Optimization with LLM Feedback [3.038642416291856]
Data augmentation is a critical component of deep learning pipelines, enhancing model generalization by increasing dataset diversity.<n>Traditional augmentation strategies rely on manually designed transformations, classification sampling, or automated search-based approaches.<n>We propose a Large Language Model (LLM)-guided augmentation optimization strategy that refines augmentation policies based on model performance feedback.
arXiv Detail & Related papers (2024-10-17T11:26:10Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.