Personality Prediction from Life Stories using Language Models
- URL: http://arxiv.org/abs/2506.19258v1
- Date: Tue, 24 Jun 2025 02:39:06 GMT
- Title: Personality Prediction from Life Stories using Language Models
- Authors: Rasiq Hussain, Jerry Ma, Rithik Khandelwal, Joshua Oltmanns, Mehak Gupta,
- Abstract summary: In this study, we address the challenge of modeling long narrative interview where each exceeds 2000 tokens so as to predict Five-Factor Model (FFM) personality traits.<n>We propose a two-step approach: first, we extract contextual embeddings using sliding-window fine-tuning of pretrained language models; then, we apply Recurrent Neural Networks (RNNs) with attention mechanisms to integrate long-range dependencies and enhance interpretability.
- Score: 12.851871085845499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Processing (NLP) offers new avenues for personality assessment by leveraging rich, open-ended text, moving beyond traditional questionnaires. In this study, we address the challenge of modeling long narrative interview where each exceeds 2000 tokens so as to predict Five-Factor Model (FFM) personality traits. We propose a two-step approach: first, we extract contextual embeddings using sliding-window fine-tuning of pretrained language models; then, we apply Recurrent Neural Networks (RNNs) with attention mechanisms to integrate long-range dependencies and enhance interpretability. This hybrid method effectively bridges the strengths of pretrained transformers and sequence modeling to handle long-context data. Through ablation studies and comparisons with state-of-the-art long-context models such as LLaMA and Longformer, we demonstrate improvements in prediction accuracy, efficiency, and interpretability. Our results highlight the potential of combining language-based features with long-context modeling to advance personality assessment from life narratives.
Related papers
- Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning [103.65680870130839]
We investigate how to design instruction data for the post-training phase of a long context pre-trained model.<n>Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones.<n>Based on these findings, we propose context synthesis, a novel data synthesis framework.
arXiv Detail & Related papers (2025-02-21T17:02:40Z) - A Survey on Long Text Modeling with Transformers [106.50471784909212]
We provide an overview of the recent advances on long texts modeling based on Transformer models.<n>We discuss how to process long input to satisfy the length limitation and design improved Transformer architectures.<n>We describe four typical applications involving long text modeling and conclude this paper with a discussion of future directions.
arXiv Detail & Related papers (2023-02-28T11:34:30Z) - Black-box language model explanation by context length probing [7.526153863886609]
We present context length probing, a novel explanation technique for causal language models.
The technique is model-agnostic and does not rely on access to model internals beyond computing token-level probabilities.
We apply context length probing to large pre-trained language models and offer some initial analyses and insights.
arXiv Detail & Related papers (2022-12-30T16:24:10Z) - A Unified Neural Network Model for Readability Assessment with Feature
Projection and Length-Balanced Loss [17.213602354715956]
We propose a BERT-based model with feature projection and length-balanced loss for readability assessment.
Our model achieves state-of-the-art performances on two English benchmark datasets and one dataset of Chinese textbooks.
arXiv Detail & Related papers (2022-10-19T05:33:27Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Pushing on Personality Detection from Verbal Behavior: A Transformer
Meets Text Contours of Psycholinguistic Features [27.799032561722893]
We report two major improvements in predicting personality traits from text data.
We integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory networks trained on within-text distributions of psycholinguistic features.
We evaluate the performance of the models we built on two benchmark datasets.
arXiv Detail & Related papers (2022-04-10T08:08:46Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Personality Trait Detection Using Bagged SVM over BERT Word Embedding
Ensembles [10.425280599592865]
We present a novel deep learning-based approach for automated personality detection from text.
We leverage state of the art advances in natural language understanding, namely the BERT language model to extract contextualized word embeddings.
Our model outperforms the previous state of the art by 1.04% and, at the same time is significantly more computationally efficient to train.
arXiv Detail & Related papers (2020-10-03T09:25:51Z) - Probabilistic Predictions of People Perusing: Evaluating Metrics of
Language Model Performance for Psycholinguistic Modeling [0.8668211481067458]
We re-evaluate a claim due to Goodkind and Bicknell that a language model's ability to model reading times is a linear function of its perplexity.
We show that the proposed relation does not always hold for Long Short-Term Memory networks, Transformers, and pre-trained models.
arXiv Detail & Related papers (2020-09-08T19:12:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.