AnchorDP3: 3D Affordance Guided Sparse Diffusion Policy for Robotic Manipulation
- URL: http://arxiv.org/abs/2506.19269v2
- Date: Wed, 25 Jun 2025 05:10:04 GMT
- Title: AnchorDP3: 3D Affordance Guided Sparse Diffusion Policy for Robotic Manipulation
- Authors: Ziyan Zhao, Ke Fan, He-Yang Xu, Ning Qiao, Bo Peng, Wenlong Gao, Dongjiang Li, Hui Shen,
- Abstract summary: AnchorDP3 is a diffusion policy framework for dual-arm robotic manipulation.<n>It is trained on large-scale, procedurally generated simulation data.<n>It achieves a 98.7% average success rate in the RoboTwin benchmark.
- Score: 8.603450327406879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present AnchorDP3, a diffusion policy framework for dual-arm robotic manipulation that achieves state-of-the-art performance in highly randomized environments. AnchorDP3 integrates three key innovations: (1) Simulator-Supervised Semantic Segmentation, using rendered ground truth to explicitly segment task-critical objects within the point cloud, which provides strong affordance priors; (2) Task-Conditioned Feature Encoders, lightweight modules processing augmented point clouds per task, enabling efficient multi-task learning through a shared diffusion-based action expert; (3) Affordance-Anchored Keypose Diffusion with Full State Supervision, replacing dense trajectory prediction with sparse, geometrically meaningful action anchors, i.e., keyposes such as pre-grasp pose, grasp pose directly anchored to affordances, drastically simplifying the prediction space; the action expert is forced to predict both robot joint angles and end-effector poses simultaneously, which exploits geometric consistency to accelerate convergence and boost accuracy. Trained on large-scale, procedurally generated simulation data, AnchorDP3 achieves a 98.7% average success rate in the RoboTwin benchmark across diverse tasks under extreme randomization of objects, clutter, table height, lighting, and backgrounds. This framework, when integrated with the RoboTwin real-to-sim pipeline, has the potential to enable fully autonomous generation of deployable visuomotor policies from only scene and instruction, totally eliminating human demonstrations from learning manipulation skills.
Related papers
- Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences.<n>Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations.<n>Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces.
arXiv Detail & Related papers (2025-03-25T15:19:56Z) - TGP: Two-modal occupancy prediction with 3D Gaussian and sparse points for 3D Environment Awareness [13.68631587423815]
3D semantic occupancy has rapidly become a research focus in the fields of robotics and autonomous driving environment perception.<n>Existing occupancy prediction tasks are modeled using voxel or point cloud-based approaches.<n>We propose a dual-modal prediction method based on 3D Gaussian sets and sparse points, which balances both spatial location and volumetric structural information.
arXiv Detail & Related papers (2025-03-13T01:35:04Z) - G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation [65.86819811007157]
We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D representation by leveraging foundation models.<n>Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates.<n>Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
arXiv Detail & Related papers (2024-11-27T14:17:43Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Diffusion Transformer Policy [48.50988753948537]
We propose a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, to model continuous end-effector actions.<n>By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets.
arXiv Detail & Related papers (2024-10-21T12:43:54Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [57.942404069484134]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.<n>Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.<n>We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation [62.58480650443393]
Segment Anything (SAM) is a vision-foundation model for generalizable scene understanding and sequence imitation.
We develop a novel multi-channel heatmap that enables the prediction of the action sequence in a single pass.
arXiv Detail & Related papers (2024-05-30T00:32:51Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.