USIS16K: High-Quality Dataset for Underwater Salient Instance Segmentation
- URL: http://arxiv.org/abs/2506.19472v2
- Date: Thu, 17 Jul 2025 01:40:53 GMT
- Title: USIS16K: High-Quality Dataset for Underwater Salient Instance Segmentation
- Authors: Lin Hong, Xin Wang, Yihao Li, Xia Wang,
- Abstract summary: We introduce USIS16K, a large-scale dataset comprising 16,151 high-resolution underwater images.<n>Each image is annotated with high-quality instance-level salient object masks.<n>We provide benchmark evaluations on underwater object detection and USIS tasks using USIS16K.
- Score: 11.590111778515775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the biological visual system that selectively allocates attention to efficiently identify salient objects or regions, underwater salient instance segmentation (USIS) aims to jointly address the problems of where to look (saliency prediction) and what is there (instance segmentation) in underwater scenarios. However, USIS remains an underexplored challenge due to the inaccessibility and dynamic nature of underwater environments, as well as the scarcity of large-scale, high-quality annotated datasets. In this paper, we introduce USIS16K, a large-scale dataset comprising 16,151 high-resolution underwater images collected from diverse environmental settings and covering 158 categories of underwater objects. Each image is annotated with high-quality instance-level salient object masks, representing a significant advance in terms of diversity, complexity, and scalability. Furthermore, we provide benchmark evaluations on underwater object detection and USIS tasks using USIS16K. To facilitate future research in this domain, the dataset and benchmark models are publicly available.
Related papers
- UWSAM: Segment Anything Model Guided Underwater Instance Segmentation and A Large-scale Benchmark Dataset [62.00529957144851]
We propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories.<n>We then introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances.<n>We show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets.
arXiv Detail & Related papers (2025-05-21T14:36:01Z) - Improving underwater semantic segmentation with underwater image quality attention and muti-scale aggregation attention [13.73105543582749]
UnderWater SegFormer (UWSegFormer) is a transformer-based framework for semantic segmentation of low-quality underwater images.<n>The proposed method has advantages in terms of segmentation completeness, boundary clarity, and subjective perceptual details when compared to SOTA methods.
arXiv Detail & Related papers (2025-03-30T12:47:56Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset [60.14089302022989]
Underwater vision tasks often suffer from low segmentation accuracy due to the complex underwater circumstances.
We construct the first large-scale underwater salient instance segmentation dataset (USIS10K)
We propose an Underwater Salient Instance architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain.
arXiv Detail & Related papers (2024-06-10T06:17:33Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - UID2021: An Underwater Image Dataset for Evaluation of No-reference
Quality Assessment Metrics [11.570496045891465]
Underwater image quality assessment (UIQA) is of high significance in underwater visual perception and image/video processing.
To address this issue, we establish a large-scale underwater image dataset, dubbed UID 2021, for evaluating no-reference UIQA metrics.
The constructed dataset contains 60 multiply degraded underwater images collected from various sources, covering six common underwater scenes.
arXiv Detail & Related papers (2022-04-19T11:28:08Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - A Benchmark dataset for both underwater image enhancement and underwater
object detection [34.25890702670983]
We provide a large-scale underwater object detection dataset with both bounding box annotations and high quality reference images.
The OUC dataset provides a platform to comprehensive study the influence of underwater image enhancement algorithms on the underwater object detection task.
arXiv Detail & Related papers (2020-06-29T03:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.