T-Rex: Task-Adaptive Spatial Representation Extraction for Robotic Manipulation with Vision-Language Models
- URL: http://arxiv.org/abs/2506.19498v1
- Date: Tue, 24 Jun 2025 10:36:15 GMT
- Title: T-Rex: Task-Adaptive Spatial Representation Extraction for Robotic Manipulation with Vision-Language Models
- Authors: Yiteng Chen, Wenbo Li, Shiyi Wang, Huiping Zhuang, Qingyao Wu,
- Abstract summary: We introduce T-Rex, a Task-Adaptive Framework for Spatial Representation Extraction.<n>We show that our approach delivers significant advantages in spatial understanding, efficiency, and stability without additional training.
- Score: 35.83717913117858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building a general robotic manipulation system capable of performing a wide variety of tasks in real-world settings is a challenging task. Vision-Language Models (VLMs) have demonstrated remarkable potential in robotic manipulation tasks, primarily due to the extensive world knowledge they gain from large-scale datasets. In this process, Spatial Representations (such as points representing object positions or vectors representing object orientations) act as a bridge between VLMs and real-world scene, effectively grounding the reasoning abilities of VLMs and applying them to specific task scenarios. However, existing VLM-based robotic approaches often adopt a fixed spatial representation extraction scheme for various tasks, resulting in insufficient representational capability or excessive extraction time. In this work, we introduce T-Rex, a Task-Adaptive Framework for Spatial Representation Extraction, which dynamically selects the most appropriate spatial representation extraction scheme for each entity based on specific task requirements. Our key insight is that task complexity determines the types and granularity of spatial representations, and Stronger representational capabilities are typically associated with Higher overall system operation costs. Through comprehensive experiments in real-world robotic environments, we show that our approach delivers significant advantages in spatial understanding, efficiency, and stability without additional training.
Related papers
- Learning to See and Act: Task-Aware View Planning for Robotic Manipulation [85.65102094981802]
Task-Aware View Planning (TAVP) is a framework designed to integrate active view planning with task-specific representation learning.<n>Our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches.
arXiv Detail & Related papers (2025-08-07T09:21:20Z) - Multimodal Fused Learning for Solving the Generalized Traveling Salesman Problem in Robotic Task Planning [11.697279328699489]
We propose a Multimodal Fused Learning framework to solve the Generalized Traveling Salesman Problem (GTSP)<n>We first introduce a coordinate-based image builder that transforms GTSP instances into spatially informative representations.<n>We then design an adaptive resolution scaling strategy to enhance adaptability across different problem scales, and develop a multimodal fusion module.
arXiv Detail & Related papers (2025-06-20T11:51:52Z) - Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System [7.266794815157721]
We propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a fine-tuned Vision Language Model (VLM)<n>The LLM decomposes tasks and constructs a global semantic map, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning.<n>This is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
arXiv Detail & Related papers (2025-06-05T13:27:41Z) - Subtask-Aware Visual Reward Learning from Segmented Demonstrations [97.80917991633248]
This paper introduces REDS: REward learning from Demonstration with Demonstrations, a novel reward learning framework.<n>We train a dense reward function conditioned on video segments and their corresponding subtasks to ensure alignment with ground-truth reward signals.<n>Our experiments show that REDS significantly outperforms baseline methods on complex robotic manipulation tasks in Meta-World.
arXiv Detail & Related papers (2025-02-28T01:25:37Z) - A Real-to-Sim-to-Real Approach to Robotic Manipulation with VLM-Generated Iterative Keypoint Rewards [29.923942622540356]
We introduce Iterative Keypoint Reward (IKER), a Python-based reward function that serves as a dynamic task specification.<n>We reconstruct real-world scenes in simulation and use the generated rewards to train reinforcement learning policies.<n>The results highlight IKER's effectiveness in enabling robots to perform multi-step tasks in dynamic environments.
arXiv Detail & Related papers (2025-02-12T18:57:22Z) - SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model [45.03115608632622]
spatial understanding is the keypoint in robot manipulation.<n>We propose SpatialVLA to explore effective spatial representations for the robot foundation model.<n>We show the proposed Adaptive Action Grids offer a new and effective way to fine-tune the pre-trained SpatialVLA model for new simulation and real-world setups.
arXiv Detail & Related papers (2025-01-27T07:34:33Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.<n>We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.<n>Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - Universal Visual Decomposer: Long-Horizon Manipulation Made Easy [54.93745986073738]
Real-world robotic tasks stretch over extended horizons and encompass multiple stages.
Prior task decomposition methods require task-specific knowledge, are computationally intensive, and cannot readily be applied to new tasks.
We propose Universal Visual Decomposer (UVD), an off-the-shelf task decomposition method for visual long horizon manipulation.
We extensively evaluate UVD on both simulation and real-world tasks, and in all cases, UVD substantially outperforms baselines across imitation and reinforcement learning settings.
arXiv Detail & Related papers (2023-10-12T17:59:41Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Generalization with Lossy Affordances: Leveraging Broad Offline Data for
Learning Visuomotor Tasks [65.23947618404046]
We introduce a framework that acquires goal-conditioned policies for unseen temporally extended tasks via offline reinforcement learning on broad data.
When faced with a novel task goal, the framework uses an affordance model to plan a sequence of lossy representations as subgoals that decomposes the original task into easier problems.
We show that our framework can be pre-trained on large-scale datasets of robot experiences from prior work and efficiently fine-tuned for novel tasks, entirely from visual inputs without any manual reward engineering.
arXiv Detail & Related papers (2022-10-12T21:46:38Z) - Mutual Information Maximization for Robust Plannable Representations [82.83676853746742]
We present MIRO, an information theoretic representational learning algorithm for model-based reinforcement learning.
We show that our approach is more robust than reconstruction objectives in the presence of distractors and cluttered scenes.
arXiv Detail & Related papers (2020-05-16T21:58:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.