Social Hatred: Efficient Multimodal Detection of Hatemongers
- URL: http://arxiv.org/abs/2506.19603v1
- Date: Tue, 24 Jun 2025 13:16:21 GMT
- Title: Social Hatred: Efficient Multimodal Detection of Hatemongers
- Authors: Tom Marzea, Abraham Israeli, Oren Tsur,
- Abstract summary: We consider a multimodal aggregative approach for the detection of hate-mongers.<n> processing a user's texts in her social context significantly improves the detection of hate mongers.<n>Our method can be used to improve the classification of coded messages, dog-whistling, and racial gas-lighting.
- Score: 4.649475179575046
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic detection of online hate speech serves as a crucial step in the detoxification of the online discourse. Moreover, accurate classification can promote a better understanding of the proliferation of hate as a social phenomenon. While most prior work focus on the detection of hateful utterances, we argue that focusing on the user level is as important, albeit challenging. In this paper we consider a multimodal aggregative approach for the detection of hate-mongers, taking into account the potentially hateful texts, user activity, and the user network. Evaluating our method on three unique datasets X (Twitter), Gab, and Parler we show that processing a user's texts in her social context significantly improves the detection of hate mongers, compared to previously used text and graph-based methods. We offer comprehensive set of results obtained in different experimental settings as well as qualitative analysis of illustrative cases. Our method can be used to improve the classification of coded messages, dog-whistling, and racial gas-lighting, as well as to inform intervention measures. Moreover, we demonstrate that our multimodal approach performs well across very different content platforms and over large datasets and networks.
Related papers
- AggregHate: An Efficient Aggregative Approach for the Detection of Hatemongers on Social Platforms [4.649475179575046]
We consider a multimodal aggregative approach for the detection of hate-mongers, taking into account the potentially hateful texts, user activity, and the user network.
Our method can be used to improve the classification of coded messages, dog-whistling, and racial gas-lighting, as well as inform intervention measures.
arXiv Detail & Related papers (2024-09-22T14:29:49Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
We show that meaning-preserving changes in input text can mislead the models.
We also introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Towards A Multi-agent System for Online Hate Speech Detection [11.843799418046666]
This paper envisions a multi-agent system for detecting the presence of hate speech in online social media platforms such as Twitter and Facebook.
We introduce a novel framework employing deep learning techniques to coordinate the channels of textual and im-age processing.
arXiv Detail & Related papers (2021-05-03T19:06:42Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHate is a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information.
We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets.
arXiv Detail & Related papers (2021-03-14T16:11:30Z) - Detecting Online Hate Speech: Approaches Using Weak Supervision and
Network Embedding Models [2.3322477552758234]
We propose a weak supervision deep learning model that quantitatively uncover hateful users and (ii) present a novel qualitative analysis to uncover indirect hateful conversations.
We evaluate our model on 19.2M posts and show that our weak supervision model outperforms the baseline models in identifying indirect hateful interactions.
We also analyze a multilayer network, constructed from two types of user interactions in Gab(quote and reply) and interaction scores from the weak supervision model as edge weights, to predict hateful users.
arXiv Detail & Related papers (2020-07-24T18:13:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.