Beyond Static Models: Hypernetworks for Adaptive and Generalizable Forecasting in Complex Parametric Dynamical Systems
- URL: http://arxiv.org/abs/2506.19609v1
- Date: Tue, 24 Jun 2025 13:22:49 GMT
- Title: Beyond Static Models: Hypernetworks for Adaptive and Generalizable Forecasting in Complex Parametric Dynamical Systems
- Authors: Pantelis R. Vlachas, Konstantinos Vlachas, Eleni Chatzi,
- Abstract summary: We introduce the Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet)<n>PHLieNet simultaneously learns a global mapping from the parameter space to a nonlinear embedding and a mapping from the inferred embedding to the weights of a dynamics propagation network.<n>By interpolating in the space of models rather than observations, PHLieNet facilitates smooth transitions across parameterized system behaviors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamical systems play a key role in modeling, forecasting, and decision-making across a wide range of scientific domains. However, variations in system parameters, also referred to as parametric variability, can lead to drastically different model behavior and output, posing challenges for constructing models that generalize across parameter regimes. In this work, we introduce the Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet), a framework that simultaneously learns: (a) a global mapping from the parameter space to a nonlinear embedding and (b) a mapping from the inferred embedding to the weights of a dynamics propagation network. The learned embedding serves as a latent representation that modulates a base network, termed the hypernetwork, enabling it to generate the weights of a target network responsible for forecasting the system's state evolution conditioned on the previous time history. By interpolating in the space of models rather than observations, PHLieNet facilitates smooth transitions across parameterized system behaviors, enabling a unified model that captures the dynamic behavior across a broad range of system parameterizations. The performance of the proposed technique is validated in a series of dynamical systems with respect to its ability to extrapolate in time and interpolate and extrapolate in the parameter space, i.e., generalize to dynamics that were unseen during training. In all cases, our approach outperforms or matches state-of-the-art baselines in both short-term forecast accuracy and in capturing long-term dynamical features, such as attractor statistics.
Related papers
- Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
We propose IGPG, an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures.<n>By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets.<n>Experiments on multiple datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework.
arXiv Detail & Related papers (2025-04-02T05:50:19Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism.
Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-07-28T04:29:53Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - DynInt: Dynamic Interaction Modeling for Large-scale Click-Through Rate
Prediction [0.0]
Learning feature interactions is the key to success for the large-scale CTR prediction in Ads ranking and recommender systems.
Deep neural network-based models are widely adopted for modeling such problems.
We propose a new model: DynInt, which learns higher-order interactions to be dynamic and data-dependent.
arXiv Detail & Related papers (2023-01-03T13:01:30Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z) - Disentangled Generative Models for Robust Prediction of System Dynamics [2.6424064030995957]
In this work, we treat the domain parameters of dynamical systems as factors of variation of the data generating process.
By leveraging ideas from supervised disentanglement and causal factorization, we aim to separate the domain parameters from the dynamics in the latent space of generative models.
Results indicate that disentangled VAEs adapt better to domain parameters spaces that were not present in the training data.
arXiv Detail & Related papers (2021-08-26T09:58:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.