Probabilistic modelling and safety assurance of an agriculture robot providing light-treatment
- URL: http://arxiv.org/abs/2506.19620v1
- Date: Tue, 24 Jun 2025 13:39:32 GMT
- Title: Probabilistic modelling and safety assurance of an agriculture robot providing light-treatment
- Authors: Mustafa Adam, Kangfeng Ye, David A. Anisi, Ana Cavalcanti, Jim Woodcock, Robert Morris,
- Abstract summary: Continued adoption of agricultural robots postulates the farmer's trust in the reliability, robustness and safety of the new technology.<n>This paper considers a probabilistic modelling and risk analysis framework for use in the early development phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continued adoption of agricultural robots postulates the farmer's trust in the reliability, robustness and safety of the new technology. This motivates our work on safety assurance of agricultural robots, particularly their ability to detect, track and avoid obstacles and humans. This paper considers a probabilistic modelling and risk analysis framework for use in the early development phases. Starting off with hazard identification and a risk assessment matrix, the behaviour of the mobile robot platform, sensor and perception system, and any humans present are captured using three state machines. An auto-generated probabilistic model is then solved and analysed using the probabilistic model checker PRISM. The result provides unique insight into fundamental development and engineering aspects by quantifying the effect of the risk mitigation actions and risk reduction associated with distinct design concepts. These include implications of adopting a higher performance and more expensive Object Detection System or opting for a more elaborate warning system to increase human awareness. Although this paper mainly focuses on the initial concept-development phase, the proposed safety assurance framework can also be used during implementation, and subsequent deployment and operation phases.
Related papers
- A Verification Methodology for Safety Assurance of Robotic Autonomous Systems [0.44241702149260353]
This paper presents a verification workflow for the safety assurance of an autonomous agricultural robot.<n>It covers the entire development life-cycle, from concept study and design to runtime verification.<n>Results show that the methodology can be effectively used to verify safety-critical properties and facilitate the early identification of design issues.
arXiv Detail & Related papers (2025-06-24T13:39:51Z) - Using Behavior Trees in Risk Assessment [1.3499500088995462]
This paper presents a model-based approach for early risk assessment in a development-centric way.<n>Our approach supports risk assessment activities by using the behavior-tree model.<n>Our findings highlight the potential of the behavior-tree model in supporting early identification, visualisation, and bridging the gap between code implementation and risk assessments' outputs.
arXiv Detail & Related papers (2025-06-11T13:07:21Z) - Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>We introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Adapting Probabilistic Risk Assessment for AI [0.0]
General-purpose artificial intelligence (AI) systems present an urgent risk management challenge.<n>Current methods often rely on selective testing and undocumented assumptions about risk priorities.<n>This paper introduces the probabilistic risk assessment (PRA) for AI framework.
arXiv Detail & Related papers (2025-04-25T17:59:14Z) - An Approach to Technical AGI Safety and Security [72.83728459135101]
We develop an approach to address the risk of harms consequential enough to significantly harm humanity.<n>We focus on technical approaches to misuse and misalignment.<n>We briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
arXiv Detail & Related papers (2025-04-02T15:59:31Z) - Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis [0.6749750044497732]
This paper introduces a safety assurance framework for Large Language Models (LLMs)-controlled robots based on data-driven reachability analysis.<n>Our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models.
arXiv Detail & Related papers (2025-03-05T21:23:15Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.<n>We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.<n>We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Don't Let Your Robot be Harmful: Responsible Robotic Manipulation via Safety-as-Policy [53.048430683355804]
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks.<n>We present Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections.<n>We show that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments.
arXiv Detail & Related papers (2024-11-27T12:27:50Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Towards Risk Modeling for Collaborative AI [5.941104748966331]
Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal.
This setting imposes potentially hazardous circumstances due to contacts that could harm human beings.
We introduce a risk modeling approach tailored to Collaborative AI systems.
arXiv Detail & Related papers (2021-03-12T18:53:06Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.