HOIverse: A Synthetic Scene Graph Dataset With Human Object Interactions
- URL: http://arxiv.org/abs/2506.19639v1
- Date: Tue, 24 Jun 2025 14:00:31 GMT
- Title: HOIverse: A Synthetic Scene Graph Dataset With Human Object Interactions
- Authors: Mrunmai Vivek Phatak, Julian Lorenz, Nico Hörmann, Jörg Hähner, Rainer Lienhart,
- Abstract summary: HOIverse is a synthetic dataset at the intersection of scene graph and human-object interaction.<n>We compute parametric relations between various pairs of objects and human-object pairs.<n>We benchmark our dataset on state-of-the-art scene graph generation models to predict parametric relations and human-object interactions.
- Score: 9.204149287692598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When humans and robotic agents coexist in an environment, scene understanding becomes crucial for the agents to carry out various downstream tasks like navigation and planning. Hence, an agent must be capable of localizing and identifying actions performed by the human. Current research lacks reliable datasets for performing scene understanding within indoor environments where humans are also a part of the scene. Scene Graphs enable us to generate a structured representation of a scene or an image to perform visual scene understanding. To tackle this, we present HOIverse a synthetic dataset at the intersection of scene graph and human-object interaction, consisting of accurate and dense relationship ground truths between humans and surrounding objects along with corresponding RGB images, segmentation masks, depth images and human keypoints. We compute parametric relations between various pairs of objects and human-object pairs, resulting in an accurate and unambiguous relation definitions. In addition, we benchmark our dataset on state-of-the-art scene graph generation models to predict parametric relations and human-object interactions. Through this dataset, we aim to accelerate research in the field of scene understanding involving people.
Related papers
- BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
We present the first full body human- object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them.
We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup.
arXiv Detail & Related papers (2022-04-14T13:21:19Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
We build a large-scale photo-realistic dataset, Human-SPACE, of animated humans placed in complex indoor and outdoor environments.
We combine a hundred diverse individuals of varying ages, gender, proportions, and ethnicity, with hundreds of motions and scenes, in order to generate an initial dataset of over 1 million frames.
Assets are generated automatically, at scale, and are compatible with existing real time rendering and game engines.
arXiv Detail & Related papers (2021-12-23T22:27:55Z) - Distillation of Human-Object Interaction Contexts for Action Recognition [0.0]
We learn human-object relationships by exploiting the interaction of their local and global contexts.
We propose the Global-Local Interaction Distillation Network (GLIDN), learning human and object interactions through space and time.
GLIDN encodes humans and objects into graph nodes and learns local and global relations via graph attention network.
arXiv Detail & Related papers (2021-12-17T11:39:44Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
In given video-based Human-Object Interaction scene, modeling thetemporal relationship between humans and objects are the important cue to understand the contextual information presented in the video.
With the effective-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also directly capture inter-time dependencies.
The full use of appearance features, spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance.
arXiv Detail & Related papers (2021-08-19T11:57:27Z) - Exploiting Scene Graphs for Human-Object Interaction Detection [81.49184987430333]
Human-Object Interaction (HOI) detection is a fundamental visual task aiming at localizing and recognizing interactions between humans and objects.
We propose a novel method to exploit this information, through the scene graph, for the Human-Object Interaction (SG2HOI) detection task.
Our method, SG2HOI, incorporates the SG information in two ways: (1) we embed a scene graph into a global context clue, serving as the scene-specific environmental context; and (2) we build a relation-aware message-passing module to gather relationships from objects' neighborhood and transfer them into interactions.
arXiv Detail & Related papers (2021-08-19T09:40:50Z) - GTNet:Guided Transformer Network for Detecting Human-Object Interactions [10.809778265707916]
The human-object interaction (HOI) detection task refers to localizing humans, localizing objects, and predicting the interactions between each human-object pair.
For detecting HOI, it is important to utilize relative spatial configurations and object semantics to find salient spatial regions of images.
This issue is addressed by the novel self-attention based guided transformer network, GTNet.
arXiv Detail & Related papers (2021-08-02T02:06:33Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - Sketching Image Gist: Human-Mimetic Hierarchical Scene Graph Generation [98.34909905511061]
We argue that a desirable scene graph should be hierarchically constructed, and introduce a new scheme for modeling scene graph.
To generate a scene graph based on HET, we parse HET with a Hybrid Long Short-Term Memory (Hybrid-LSTM) which specifically encodes hierarchy and siblings context.
To further prioritize key relations in the scene graph, we devise a Relation Ranking Module (RRM) to dynamically adjust their rankings.
arXiv Detail & Related papers (2020-07-17T05:12:13Z) - 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places,
Objects, and Humans [27.747241700017728]
We present a unified representation for actionable spatial perception: 3D Dynamic Scene Graphs.
3D Dynamic Scene Graphs can have a profound impact on planning and decision-making, human-robot interaction, long-term autonomy, and scene prediction.
arXiv Detail & Related papers (2020-02-15T00:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.