ReBoot: Encrypted Training of Deep Neural Networks with CKKS Bootstrapping
- URL: http://arxiv.org/abs/2506.19693v1
- Date: Tue, 24 Jun 2025 15:00:14 GMT
- Title: ReBoot: Encrypted Training of Deep Neural Networks with CKKS Bootstrapping
- Authors: Alberto Pirillo, Luca Colombo,
- Abstract summary: Homomorphic Encryption (HE) provides post-quantum cryptographic security and end-to-end data protection.<n>Deep Neural Networks (DNNs) have gained attention in HE settings, but their use has largely been restricted to encrypted inference.<n>We present ReBoot, the first framework to enable fully encrypted and non-interactive training of DNNs.
- Score: 0.0552480439325792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Growing concerns over data privacy underscore the need for deep learning methods capable of processing sensitive information without compromising confidentiality. Among privacy-enhancing technologies, Homomorphic Encryption (HE) stands out by providing post-quantum cryptographic security and end-to-end data protection, safeguarding data even during computation. While Deep Neural Networks (DNNs) have gained attention in HE settings, their use has largely been restricted to encrypted inference. Prior research on encrypted training has primarily focused on logistic regression or has relied on multi-party computation to enable model fine-tuning. This stems from the substantial computational overhead and algorithmic complexity involved in DNNs training under HE. In this paper, we present ReBoot, the first framework to enable fully encrypted and non-interactive training of DNNs. Built upon the CKKS scheme, ReBoot introduces a novel HE-compliant neural network architecture based on local error signals, specifically designed to minimize multiplicative depth and reduce noise accumulation. ReBoot employs a tailored packing strategy that leverages real-number arithmetic via SIMD operations, significantly lowering both computational and memory overhead. Furthermore, by integrating approximate bootstrapping, ReBoot learning algorithm supports effective training of arbitrarily deep multi-layer perceptrons, making it well-suited for machine learning as-a-service. ReBoot is evaluated on both image recognition and tabular benchmarks, achieving accuracy comparable to 32-bit floating-point plaintext training while enabling fully encrypted training. It improves test accuracy by up to +3.27% over encrypted logistic regression, and up to +6.83% over existing encrypted DNN frameworks, while reducing training latency by up to 8.83x. ReBoot is made available to the scientific community as a public repository.
Related papers
- NeRF-based CBCT Reconstruction needs Normalization and Initialization [53.58395475423445]
NeRF-based methods suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network.<n>We introduce a Normalized Hash, which enhances feature consistency and mitigates the mismatch.<n>The neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance.
arXiv Detail & Related papers (2025-06-24T16:01:45Z) - CryptoTrain: Fast Secure Training on Encrypted Dataset [17.23344104239024]
We develop a hybrid cryptographic protocol that merges Homomorphic Encryption with Oblivious Transfer (OT) for handling linear and non-linear operations.
By integrating CCMul-Precompute and correlated convolution into CryptoTrain-B, we facilitate a rapid and efficient secure training framework.
arXiv Detail & Related papers (2024-09-25T07:06:14Z) - Tempo: Confidentiality Preservation in Cloud-Based Neural Network
Training [8.187538747666203]
Cloud deep learning platforms provide cost-effective deep neural network (DNN) training for customers who lack computation resources.
Recently, researchers have sought to protect data privacy in deep learning by leveraging CPU trusted execution environments (TEEs)
This paper presents Tempo, the first cloud-based deep learning system that cooperates with TEE and distributed GPU.
arXiv Detail & Related papers (2024-01-21T15:57:04Z) - Exploiting Symmetric Temporally Sparse BPTT for Efficient RNN Training [20.49255973077044]
This work describes a training algorithm for Delta RNNs that exploits temporal sparsity in the backward propagation phase to reduce computational requirements for training on the edge.
Results show a reduction of $sim$80% in matrix operations for training a 56k parameter Delta LSTM on the Fluent Speech Commands dataset with negligible accuracy loss.
We show that the proposed Delta RNN training will be useful for online incremental learning on edge devices with limited computing resources.
arXiv Detail & Related papers (2023-12-14T23:07:37Z) - Efficient Privacy-Preserving Convolutional Spiking Neural Networks with
FHE [1.437446768735628]
Homomorphic Encryption (FHE) is a key technology for privacy-preserving computation.
FHE has limitations in processing continuous non-polynomial functions.
We present a framework called FHE-DiCSNN for homomorphic SNNs.
FHE-DiCSNN achieves an accuracy of 97.94% on ciphertexts, with a loss of only 0.53% compared to the original network's accuracy of 98.47%.
arXiv Detail & Related papers (2023-09-16T15:37:18Z) - zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training [6.993329554241878]
ZkDL is an efficient zero-knowledge proof for deep learning training.
zkReLU is a specialized proof for the ReLU activation and its backpropagation.
FAC4DNN is our specialized arithmetic circuit design modelling neural networks.
arXiv Detail & Related papers (2023-07-30T16:41:13Z) - Hierarchical Training of Deep Neural Networks Using Early Exiting [42.186536611404165]
Deep neural networks provide state-of-the-art accuracy for vision tasks but they require significant resources for training.
Deep neural networks are trained on cloud servers far from the edge devices that acquire the data.
In this study, a novel hierarchical training method for deep neural networks is proposed that uses early exits in a divided architecture between edge and cloud workers.
arXiv Detail & Related papers (2023-03-04T11:30:16Z) - Enabling Incremental Training with Forward Pass for Edge Devices [0.0]
We introduce a method using evolutionary strategy (ES) that can partially retrain the network enabling it to adapt to changes and recover after an error has occurred.
This technique enables training on an inference-only hardware without the need to use backpropagation and with minimal resource overhead.
arXiv Detail & Related papers (2021-03-25T17:43:04Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.