CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
- URL: http://arxiv.org/abs/2506.19816v1
- Date: Tue, 24 Jun 2025 17:30:27 GMT
- Title: CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
- Authors: Hao Li, Shuai Yang, Yilun Chen, Yang Tian, Xiaoda Yang, Xinyi Chen, Hanqing Wang, Tai Wang, Feng Zhao, Dahua Lin, Jiangmiao Pang,
- Abstract summary: CronusVLA is a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage.<n>CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO.
- Score: 67.1520483301709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.
Related papers
- SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities.<n>Their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation.<n>We propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens.
arXiv Detail & Related papers (2025-06-15T05:04:17Z) - Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models [30.7855782696894]
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions.<n>We propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models.
arXiv Detail & Related papers (2025-05-27T13:47:18Z) - Mitigating Trade-off: Stream and Query-guided Aggregation for Efficient and Effective 3D Occupancy Prediction [12.064509280163502]
3D occupancy prediction has emerged as a key perception task for autonomous driving.<n>Recent studies focus on integrating information obtained from past observations to improve prediction accuracy.<n>We propose StreamOcc, a framework that aggregates past-temporal information in a stream-based manner.<n>Experiments on the Occ3D-nus dataset show that StreamOcc achieves state-of-the-art performance in real-time settings, while reducing memory usage by more than 50% compared to previous methods.
arXiv Detail & Related papers (2025-03-28T02:05:53Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - VS-TransGRU: A Novel Transformer-GRU-based Framework Enhanced by
Visual-Semantic Fusion for Egocentric Action Anticipation [33.41226268323332]
Egocentric action anticipation is a challenging task that aims to make advanced predictions of future actions in the first-person view.
Most existing methods focus on improving the model architecture and loss function based on the visual input and recurrent neural network.
We propose a novel visual-semantic fusion enhanced and Transformer GRU-based action anticipation framework.
arXiv Detail & Related papers (2023-07-08T06:49:54Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.