Speaker Embeddings to Improve Tracking of Intermittent and Moving Speakers
- URL: http://arxiv.org/abs/2506.19875v1
- Date: Mon, 23 Jun 2025 13:02:20 GMT
- Title: Speaker Embeddings to Improve Tracking of Intermittent and Moving Speakers
- Authors: Taous Iatariene, Can Cui, Alexandre Guérin, Romain Serizel,
- Abstract summary: We propose to perform identity reassignment post-tracking, using speaker embeddings.<n>Beamforming is used to enhance the signal towards the speakers' positions in order to compute speaker embeddings.<n>We evaluate the performance of the proposed speaker embedding-based identity reassignment method on a dataset where speakers change position during inactivity periods.
- Score: 53.12031345322412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speaker tracking methods often rely on spatial observations to assign coherent track identities over time. This raises limits in scenarios with intermittent and moving speakers, i.e., speakers that may change position when they are inactive, thus leading to discontinuous spatial trajectories. This paper proposes to investigate the use of speaker embeddings, in a simple solution to this issue. We propose to perform identity reassignment post-tracking, using speaker embeddings. We leverage trajectory-related information provided by an initial tracking step and multichannel audio signal. Beamforming is used to enhance the signal towards the speakers' positions in order to compute speaker embeddings. These are then used to assign new track identities based on an enrollment pool. We evaluate the performance of the proposed speaker embedding-based identity reassignment method on a dataset where speakers change position during inactivity periods. Results show that it consistently improves the identity assignment performance of neural and standard tracking systems. In particular, we study the impact of beamforming and input duration for embedding extraction.
Related papers
- Analyzing and Improving Speaker Similarity Assessment for Speech Synthesis [20.80178325643714]
In generative speech systems, identity is often assessed using automatic speaker verification (ASV) embeddings.<n>We find that widely used ASV embeddings focus mainly on static features like timbre and pitch range, while neglecting dynamic elements such as rhythm.<n>To address these gaps, we propose U3D, a metric that evaluates speakers' dynamic rhythm patterns.
arXiv Detail & Related papers (2025-07-02T22:16:42Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
We propose a novel approach to leverage semantic information in speaker diarization systems.
We introduce spoken language understanding modules to extract speaker-related semantic information.
We present a novel framework to integrate these constraints into the speaker diarization pipeline.
arXiv Detail & Related papers (2023-09-19T09:13:30Z) - Improved Relation Networks for End-to-End Speaker Verification and
Identification [0.0]
Speaker identification systems are tasked to identify a speaker amongst a set of enrolled speakers given just a few samples.
We propose improved relation networks for speaker verification and few-shot (unseen) speaker identification.
Inspired by the use of prototypical networks in speaker verification, we train the model to classify samples in the current episode amongst all speakers present in the training set.
arXiv Detail & Related papers (2022-03-31T17:44:04Z) - Disentangled dimensionality reduction for noise-robust speaker
diarisation [30.383712356205084]
Speaker embeddings play a crucial role in the performance of diarisation systems.
Speaker embeddings often capture spurious information such as noise and reverberation, adversely affecting performance.
We propose a novel dimensionality reduction framework that can disentangle spurious information from the speaker embeddings.
We also propose the use of a speech/non-speech indicator to prevent the speaker code from learning from the background noise.
arXiv Detail & Related papers (2021-10-07T12:19:09Z) - Joint speaker diarisation and tracking in switching state-space model [51.58295550366401]
This paper proposes to explicitly track the movements of speakers while jointly performing diarisation within a unified model.
A state-space model is proposed, where the hidden state expresses the identity of the current active speaker and the predicted locations of all speakers.
Experiments on a Microsoft rich meeting transcription task show that the proposed joint location tracking and diarisation approach is able to perform comparably with other methods that use location information.
arXiv Detail & Related papers (2021-09-23T04:43:58Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings.
The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant cross-entropy based loss functions.
arXiv Detail & Related papers (2021-05-05T14:55:29Z) - Streaming Multi-talker Speech Recognition with Joint Speaker
Identification [77.46617674133556]
SURIT employs the recurrent neural network transducer (RNN-T) as the backbone for both speech recognition and speaker identification.
We validate our idea on the Librispeech dataset -- a multi-talker dataset derived from Librispeech, and present encouraging results.
arXiv Detail & Related papers (2021-04-05T18:37:33Z) - Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain [103.3388198420822]
Esting the positions of multiple speakers can be helpful for tasks like automatic speech recognition or speaker diarization.
This paper proposes a novel audiovisual data fusion framework for speaker localization by assigning individual dynamic stream weights to specific regions.
A performance evaluation using audiovisual recordings yields promising results, with the proposed fusion approach outperforming all baseline models.
arXiv Detail & Related papers (2021-02-23T09:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.