Utilization of SU(2) Symmetry for Efficient Simulation of Quantum Systems
- URL: http://arxiv.org/abs/2506.19879v1
- Date: Mon, 23 Jun 2025 16:17:56 GMT
- Title: Utilization of SU(2) Symmetry for Efficient Simulation of Quantum Systems
- Authors: Oleksa Hryniv,
- Abstract summary: This work investigates variational compilation methods for simulating quantum systems with internal SU(2) symmetry.<n>The central component of the research is the application of the Dynamic Mode Decomposition (DMD) method to extrapolate trained variational circuit parameters.<n>An approach is proposed for predicting variationally compiled quantum states with a larger number of Trotter steps using extrapolated parameters, eliminating the need for retraining.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates variational compilation methods for simulating quantum systems with internal SU(2) symmetry. The central component of the research is the application of the Dynamic Mode Decomposition (DMD) method to extrapolate trained variational circuit parameters beyond the initial optimization range. An approach is proposed for predicting variationally compiled quantum states with a larger number of Trotter steps using extrapolated parameters, eliminating the need for retraining. The efficiency of the method is validated by comparing it with classical Trotterization and the results of variational training. The proposed method demonstrates an effective integration of symmetry-consistent quantum circuit architecture with spectral prediction techniques. The methodology shows promise for scalable modeling of strongly correlated systems, particularly in condensed matter physics problems, such as the Heisenberg model on Kagome lattices.
Related papers
- Biorthogonal Neural Network Approach to Two-Dimensional Non-Hermitian Systems [5.513161407069216]
Non-Hermitian quantum many-body systems exhibit a rich array of physical phenomena.<n>Non-Hermitian skin effects and exceptional points remain largely inaccessible to existing numerical techniques.
arXiv Detail & Related papers (2025-08-01T21:02:41Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
This paper introduces KO, a novel neural gradient inspired by kinetic theory and partial differential equation (PDE) simulations.<n>We reimagine the dynamics of network parameters as the evolution of a particle system governed by kinetic principles.<n>This physics-driven approach inherently promotes parameter diversity during optimization, mitigating the phenomenon of parameter condensation.
arXiv Detail & Related papers (2025-05-20T18:00:01Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
We show an improved version of the adaptive variational quantum dynamics simulation (AVQDS) method, which we call AVQDS(T)<n>The algorithm adaptively adds layers of disjoint unitary gates to the ansatz circuit so as to keep the McLachlan distance, a measure of the accuracy of the variational dynamics, below a fixed threshold.<n>We also show a method based on eigenvalue truncation to solve the linear equations of motion for the variational parameters with enhanced noise resilience.
arXiv Detail & Related papers (2024-08-13T02:56:43Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Accelerating the analysis of optical quantum systems using the Koopman operator [1.2499537119440245]
prediction of photon echoes is a crucial technique for understanding optical quantum systems.
This article investigates the use of data-driven surrogate models based on the Koopman operator to accelerate this process.
arXiv Detail & Related papers (2023-10-25T12:02:04Z) - Symmetry enhanced variational quantum imaginary time evolution [1.6872254218310017]
We provide guidance for constructing parameterized quantum circuits according to the locality and symmetries of the Hamiltonian.
Our approach can be used to implement the unitary and anti-unitary symmetries of a quantum system.
Numerical results confirm that the symmetry-enhanced circuits outperform the frequently-used parametrized circuits in the literature.
arXiv Detail & Related papers (2023-07-25T16:00:34Z) - Parsimonious Optimisation of Parameters in Variational Quantum Circuits [1.303764728768944]
We propose a novel Quantum-Gradient Sampling that requires the execution of at most two circuits per iteration to update the optimisable parameters.
Our proposed method achieves similar convergence rates to classical gradient descent, and empirically outperforms gradient coordinate descent, and SPSA.
arXiv Detail & Related papers (2023-06-20T18:50:18Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.