DIM-SUM: Dynamic IMputation for Smart Utility Management
- URL: http://arxiv.org/abs/2506.20023v1
- Date: Tue, 24 Jun 2025 21:38:06 GMT
- Title: DIM-SUM: Dynamic IMputation for Smart Utility Management
- Authors: Ryan Hildebrant, Rahul Bhope, Sharad Mehrotra, Christopher Tull, Nalini Venkatasubramanian,
- Abstract summary: We introduce DIM-SUM, a preprocessing framework for training robust imputation models.<n>DIM-SUM bridges the gap between artificially masked training data and real missing patterns.<n>We demonstrate that DIM-SUM outperforms traditional methods by reaching similar accuracy with lower processing time and significantly less training data.
- Score: 4.494470981739729
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series imputation models have traditionally been developed using complete datasets with artificial masking patterns to simulate missing values. However, in real-world infrastructure monitoring, practitioners often encounter datasets where large amounts of data are missing and follow complex, heterogeneous patterns. We introduce DIM-SUM, a preprocessing framework for training robust imputation models that bridges the gap between artificially masked training data and real missing patterns. DIM-SUM combines pattern clustering and adaptive masking strategies with theoretical learning guarantees to handle diverse missing patterns actually observed in the data. Through extensive experiments on over 2 billion readings from California water districts, electricity datasets, and benchmarks, we demonstrate that DIM-SUM outperforms traditional methods by reaching similar accuracy with lower processing time and significantly less training data. When compared against a large pre-trained model, DIM-SUM averages 2x higher accuracy with significantly less inference time.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Data Fusion of Deep Learned Molecular Embeddings for Property Prediction [44.99833362998488]
We use data fusion techniques to combine the learned molecular embeddings of various single-task models and trained a multi-task model on this combined embedding.<n>We show that the fused, multi-task models outperform standard multi-task models for sparse datasets and can provide enhanced prediction on data-limited properties compared to single-task models.
arXiv Detail & Related papers (2025-04-09T21:40:15Z) - Exploring Patterns Behind Sports [3.2838877620203935]
This paper presents a comprehensive framework for time series prediction using a hybrid model that combines ARIMA and LSTM.<n>The model incorporates feature engineering techniques, including embedding and PCA, to transform raw data into a lower-dimensional representation.
arXiv Detail & Related papers (2025-02-11T11:51:07Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - In-Database Data Imputation [0.6157028677798809]
Missing data is a widespread problem in many domains, creating challenges in data analysis and decision making.
Traditional techniques for dealing with missing data, such as excluding incomplete records or imputing simple estimates, are computationally efficient but may introduce bias and disrupt variable relationships.
Model-based imputation techniques offer a more robust solution that preserves the variability and relationships in the data, but they demand significantly more computation time.
This work enables efficient, high-quality, and scalable data imputation within a database system using the widely used MICE method.
arXiv Detail & Related papers (2024-01-07T01:57:41Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.