DiaLLMs: EHR Enhanced Clinical Conversational System for Clinical Test Recommendation and Diagnosis Prediction
- URL: http://arxiv.org/abs/2506.20059v1
- Date: Tue, 24 Jun 2025 23:47:21 GMT
- Title: DiaLLMs: EHR Enhanced Clinical Conversational System for Clinical Test Recommendation and Diagnosis Prediction
- Authors: Weijieying Ren, Tianxiang Zhao, Lei Wang, Tianchun Wang, Vasant Honavar,
- Abstract summary: We propose DiaLLM, the first medical LLM that integrates heterogeneous EHR data into clinically grounded dialogues.<n>To construct clinically grounded dialogues from EHR, we design a Clinical Test Reference (CTR) strategy that maps each clinical code to its corresponding description and classifies test results as "normal" or "abnormal"<n>Extensive experimental results demonstrate that DiaLLM outperforms baselines in clinical test recommendation and diagnosis prediction.
- Score: 6.253071540087993
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have led to remarkable progresses in medical consultation. However, existing medical LLMs overlook the essential role of Electronic Health Records (EHR) and focus primarily on diagnosis recommendation, limiting their clinical applicability. We propose DiaLLM, the first medical LLM that integrates heterogeneous EHR data into clinically grounded dialogues, enabling clinical test recommendation, result interpretation, and diagnosis prediction to better align with real-world medical practice. To construct clinically grounded dialogues from EHR, we design a Clinical Test Reference (CTR) strategy that maps each clinical code to its corresponding description and classifies test results as "normal" or "abnormal". Additionally, DiaLLM employs a reinforcement learning framework for evidence acquisition and automated diagnosis. To handle the large action space, we introduce a reject sampling strategy to reduce redundancy and improve exploration efficiency. Furthermore, a confirmation reward and a class-sensitive diagnosis reward are designed to guide accurate diagnosis prediction. Extensive experimental results demonstrate that DiaLLM outperforms baselines in clinical test recommendation and diagnosis prediction.
Related papers
- Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering [7.092919468004549]
Large Language Models (LLMs) demonstrate significant capabilities in medical text understanding and generation.<n>This study aims to enhance LLMs' diagnostic accuracy and clinical reasoning ability.
arXiv Detail & Related papers (2025-08-01T03:05:43Z) - Refine Medical Diagnosis Using Generation Augmented Retrieval and Clinical Practice Guidelines [16.56254046507092]
We introduce GARMLE-G, a Generation-Augmented Retrieval framework that grounds medical language model outputs in authoritative guidelines.<n>Unlike conventional Retrieval-Augmented Generation based approaches, GARMLE-G enables hallucination-free outputs by directly retrieving authoritative guideline content.<n>A prototype system for hypertension diagnosis was developed and evaluated on multiple metrics, demonstrating superior retrieval precision, semantic relevance, and clinical guideline adherence.
arXiv Detail & Related papers (2025-06-22T11:31:13Z) - Insight: A Multi-Modal Diagnostic Pipeline using LLMs for Ocular Surface Disease Diagnosis [17.970320199904084]
We introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
To tackle these challenges, we introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
arXiv Detail & Related papers (2024-10-01T00:23:05Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - MSDiagnosis: A Benchmark for Evaluating Large Language Models in Multi-Step Clinical Diagnosis [8.641421154025211]
We propose a Chinese clinical diagnostic benchmark, called MSDiagnosis.<n>This benchmark consists of 2,225 cases from 12 departments, covering tasks such as primary diagnosis, differential diagnosis, and final diagnosis.
arXiv Detail & Related papers (2024-08-19T14:31:57Z) - medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs [13.806201934732321]
medIKAL combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities.<n> medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs.<n>We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset.
arXiv Detail & Related papers (2024-06-20T13:56:52Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
We present a "reasoning-aware" diagnosis framework that rationalizes the diagnostic process via prompt-based learning.
We propose a novel set of criteria for evaluating machine-generated rationales' potential for real-world clinical settings.
arXiv Detail & Related papers (2023-12-12T16:14:45Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
In clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention.
We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines.
arXiv Detail & Related papers (2022-10-16T10:12:07Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.