Towards Efficient Exemplar Based Image Editing with Multimodal VLMs
- URL: http://arxiv.org/abs/2506.20155v1
- Date: Wed, 25 Jun 2025 06:20:36 GMT
- Title: Towards Efficient Exemplar Based Image Editing with Multimodal VLMs
- Authors: Avadhoot Jadhav, Ashutosh Srivastava, Abhinav Java, Silky Singh, Tarun Ram Menta, Surgan Jandial, Balaji Krishnamurthy,
- Abstract summary: In this work, we tackle the task of transferring an edit from an exemplar pair to a content image(s) by leveraging text-to-image diffusion models and multimodal VLMs.<n>Our end-to-end pipeline is optimization-free, but our experiments demonstrate that it still outperforms baselines on multiple types of edits while being 4x faster.
- Score: 11.830273909934688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-Image Diffusion models have enabled a wide array of image editing applications. However, capturing all types of edits through text alone can be challenging and cumbersome. The ambiguous nature of certain image edits is better expressed through an exemplar pair, i.e., a pair of images depicting an image before and after an edit respectively. In this work, we tackle exemplar-based image editing -- the task of transferring an edit from an exemplar pair to a content image(s), by leveraging pretrained text-to-image diffusion models and multimodal VLMs. Even though our end-to-end pipeline is optimization-free, our experiments demonstrate that it still outperforms baselines on multiple types of edits while being ~4x faster.
Related papers
- ReEdit: Multimodal Exemplar-Based Image Editing with Diffusion Models [11.830273909934688]
Modern Text-to-Image (T2I) Diffusion models have revolutionized image editing by enabling the generation of high-quality images.
We propose ReEdit, a modular and efficient end-to-end framework that captures edits in both text and image modalities.
Our results demonstrate that ReEdit consistently outperforms contemporary approaches both qualitatively and quantitatively.
arXiv Detail & Related papers (2024-11-06T15:19:24Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years.
We propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing.
Our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks.
arXiv Detail & Related papers (2024-02-04T18:50:29Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - Visual Instruction Inversion: Image Editing via Visual Prompting [34.96778567507126]
We present a method for image editing via visual prompting.
We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions.
arXiv Detail & Related papers (2023-07-26T17:50:10Z) - Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion
Models [6.34777393532937]
We propose an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing.
Our proposed editing method consists of a reconstruction stage and an editing stage.
Experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-08T03:34:33Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z) - UniTune: Text-Driven Image Editing by Fine Tuning a Diffusion Model on a
Single Image [2.999198565272416]
We make the observation that image-generation models can be converted to image-editing models simply by fine-tuning them on a single image.
We propose UniTune, a novel image editing method. UniTune gets as input an arbitrary image and a textual edit description, and carries out the edit while maintaining high fidelity to the input image.
We demonstrate that it is broadly applicable and can perform a surprisingly wide range of expressive editing operations, including those requiring significant visual changes that were previously impossible.
arXiv Detail & Related papers (2022-10-17T23:46:05Z) - SpaceEdit: Learning a Unified Editing Space for Open-Domain Image
Editing [94.31103255204933]
We propose a unified model for open-domain image editing focusing on color and tone adjustment of open-domain images.
Our model learns a unified editing space that is more semantic, intuitive, and easy to manipulate.
We show that by inverting image pairs into latent codes of the learned editing space, our model can be leveraged for various downstream editing tasks.
arXiv Detail & Related papers (2021-11-30T23:53:32Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.