Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition
- URL: http://arxiv.org/abs/2506.20174v2
- Date: Thu, 26 Jun 2025 03:23:43 GMT
- Title: Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition
- Authors: Man Duc Chuc,
- Abstract summary: We investigate whether foundation models pretrained on remote sensing and general vision datasets can be effectively combined to improve performance.<n>The results show that feature-level ensembling of smaller pretrained models can match or exceed the performance of much larger models.<n>The study highlights the potential of applying knowledge distillation to transfer the strengths of ensembles into more compact models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models are rapidly transforming Earth Observation data mining by enabling generalizable and scalable solutions for key tasks such as scene classification and semantic segmentation. While most efforts in the geospatial domain have focused on developing large models trained from scratch using massive Earth Observation datasets, an alternative strategy that remains underexplored is the reuse and combination of existing pretrained models. In this study, we investigate whether foundation models pretrained on remote sensing and general vision datasets can be effectively combined to improve performance across a diverse set of key Earth Observation tasks. Using the GEO-Bench benchmark, we evaluate several prominent models, including Prithvi, Hiera, and DOFA, on eleven datasets covering a range of spatial resolutions, sensor modalities, and task types. The results show that feature-level ensembling of smaller pretrained models can match or exceed the performance of much larger models, while requiring less training time and computational resources. Moreover, the study highlights the potential of applying knowledge distillation to transfer the strengths of ensembles into more compact models, offering a practical path for deploying foundation models in real-world Earth Observation applications.
Related papers
- TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation [65.74990259650984]
We introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery.<n>Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism.<n>TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench.
arXiv Detail & Related papers (2025-06-06T17:59:50Z) - MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data [0.0]
We present MESA - a novel data-centric alternative to procedural terrain modeling.<n>MESA generates high-quality terrain samples from text descriptions using global remote sensing data.<n>The model's capabilities are demonstrated through extensive experiments, highlighting its ability to generate realistic and diverse terrain landscapes.
arXiv Detail & Related papers (2025-04-09T18:37:24Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)<n>In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.<n>We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
Existing methods suffer from a generalization bottleneck in real-world scenarios.<n>We contribute a million-scale dataset with two notable advantages over existing training data.<n>We propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios.
arXiv Detail & Related papers (2024-12-02T12:08:40Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Better, Not Just More: Data-Centric Machine Learning for Earth Observation [16.729827218159038]
We argue that a shift from a model-centric view to a complementary data-centric perspective is necessary for further improvements in accuracy, generalization ability, and real impact on end-user applications.<n>This work presents a definition as well as a precise categorization and overview of automated data-centric learning approaches for geospatial data.
arXiv Detail & Related papers (2023-12-08T19:24:05Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
We propose a benchmark comprised of six classification and six segmentation tasks.
This benchmark will be a driver of progress across a variety of Earth monitoring tasks.
arXiv Detail & Related papers (2023-06-06T16:16:05Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
Recent progress in self-supervision shows that pre-training large neural networks on vast amounts of unsupervised data can lead to impressive increases in generalisation for downstream tasks.
Such models, recently coined as foundation models, have been transformational to the field of natural language processing.
We propose to develop a new benchmark comprised of a variety of downstream tasks related to climate change.
arXiv Detail & Related papers (2021-12-01T15:38:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.