Narrative Shift Detection: A Hybrid Approach of Dynamic Topic Models and Large Language Models
- URL: http://arxiv.org/abs/2506.20269v1
- Date: Wed, 25 Jun 2025 09:25:15 GMT
- Title: Narrative Shift Detection: A Hybrid Approach of Dynamic Topic Models and Large Language Models
- Authors: Kai-Robin Lange, Tobias Schmidt, Matthias Reccius, Henrik Müller, Michael Roos, Carsten Jentsch,
- Abstract summary: We propose a combination of the language understanding capabilities of Large Language Models with the large scale applicability of topic models to dynamically model narrative shifts across time.<n>We employ our pipeline on a corpus of The Wall Street Journal news paper articles from 2009 to 2023.
- Score: 0.4649452333875421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With rapidly evolving media narratives, it has become increasingly critical to not just extract narratives from a given corpus but rather investigate, how they develop over time. While popular narrative extraction methods such as Large Language Models do well in capturing typical narrative elements or even the complex structure of a narrative, applying them to an entire corpus comes with obstacles, such as a high financial or computational cost. We propose a combination of the language understanding capabilities of Large Language Models with the large scale applicability of topic models to dynamically model narrative shifts across time using the Narrative Policy Framework. We apply a topic model and a corresponding change point detection method to find changes that concern a specific topic of interest. Using this model, we filter our corpus for documents that are particularly representative of that change and feed them into a Large Language Model that interprets the change that happened in an automated fashion and distinguishes between content and narrative shifts. We employ our pipeline on a corpus of The Wall Street Journal news paper articles from 2009 to 2023. Our findings indicate that a Large Language Model can efficiently extract a narrative shift if one exists at a given point in time, but does not perform as well when having to decide whether a shift in content or a narrative shift took place.
Related papers
- DiscoSum: Discourse-aware News Summarization [79.4884227574627]
We introduce a novel approach to integrating discourse structure into summarization processes.<n>We present a novel summarization dataset where news articles are summarized multiple times in different ways across different social media platforms.<n>We develop a novel news discourse schema to describe summarization structures and a novel algorithm, DiscoSum, which employs beam search technique for structure-aware summarization.
arXiv Detail & Related papers (2025-06-07T22:00:30Z) - CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
We introduce CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling method.<n>We find self-similarity to be an effective metric to prevent functional words from acting as candidate topic words.<n>Our approach significantly enhances the coherence and diversity of generated topics, as well as the topic model's ability to handle noisy data.
arXiv Detail & Related papers (2024-10-19T15:27:11Z) - A Large Language Model Guided Topic Refinement Mechanism for Short Text Modeling [10.589126787499973]
Existing topic models often struggle to accurately capture the underlying semantic patterns of short texts.<n>This paper introduces a novel model-agnostic mechanism, termed Topic Refinement.<n>We show that Topic Refinement boosts the topic quality and improves the performance in topic-related text classification tasks.
arXiv Detail & Related papers (2024-03-26T13:50:34Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Conflicts, Villains, Resolutions: Towards models of Narrative Media
Framing [19.589945994234075]
We revisit a widely used conceptualization of framing from the communication sciences which explicitly captures elements of narratives.
We adapt an effective annotation paradigm that breaks a complex annotation task into a series of simpler binary questions.
We explore automatic multi-label prediction of our frames with supervised and semi-supervised approaches.
arXiv Detail & Related papers (2023-06-03T08:50:13Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
We extend the Transformer model to dynamically conduct entity state updates and sentence realization for narrative generation.
Experiments on two narrative datasets show that our model can generate more coherent and diverse narratives than strong baselines.
arXiv Detail & Related papers (2022-08-08T09:02:19Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
We propose a topic adaptive storyteller to model the ability of inter-topic generalization.
We also propose a prototype encoding structure to model the ability of intra-topic derivation.
Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model.
arXiv Detail & Related papers (2020-08-11T03:55:11Z) - Generating Narrative Text in a Switching Dynamical System [20.583487756067022]
We formalize narrative modeling as a Switching Linear Dynamical System (SLDS)
A SLDS is a dynamical system in which the latent dynamics of the system is controlled by top-level discrete switching variables.
We derive a Gibbs sampler for our model that can fill in arbitrary parts of the narrative, guided by the switching variables.
arXiv Detail & Related papers (2020-04-08T01:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.