TDiR: Transformer based Diffusion for Image Restoration Tasks
- URL: http://arxiv.org/abs/2506.20302v1
- Date: Wed, 25 Jun 2025 10:28:13 GMT
- Title: TDiR: Transformer based Diffusion for Image Restoration Tasks
- Authors: Abbas Anwar, Mohammad Shullar, Ali Arshad Nasir, Mudassir Masood, Saeed Anwar,
- Abstract summary: Images captured in challenging environments often experience various forms of degradation, including noise, color cast, blur, and light scattering.<n>These effects significantly reduce image quality, hindering their applicability in downstream tasks such as object detection, mapping, and classification.<n>Our transformer-based diffusion model was developed to address image restoration tasks, aiming to improve the quality of degraded images.
- Score: 19.992144590243836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Images captured in challenging environments often experience various forms of degradation, including noise, color cast, blur, and light scattering. These effects significantly reduce image quality, hindering their applicability in downstream tasks such as object detection, mapping, and classification. Our transformer-based diffusion model was developed to address image restoration tasks, aiming to improve the quality of degraded images. This model was evaluated against existing deep learning methodologies across multiple quality metrics for underwater image enhancement, denoising, and deraining on publicly available datasets. Our findings demonstrate that the diffusion model, combined with transformers, surpasses current methods in performance. The results of our model highlight the efficacy of diffusion models and transformers in improving the quality of degraded images, consequently expanding their utility in downstream tasks that require high-fidelity visual data.
Related papers
- Restoring Real-World Images with an Internal Detail Enhancement Diffusion Model [9.520471615470267]
Restoring real-world degraded images, such as old photographs or low-resolution images, presents a significant challenge.<n>Recent data-driven approaches have struggled with achieving high-fidelity restoration and providing object-level control over colorization.<n>We propose an internal detail-preserving diffusion model for high-fidelity restoration of real-world degraded images.
arXiv Detail & Related papers (2025-05-24T12:32:53Z) - Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
Diffusion models have revolutionized the field of content synthesis and editing.<n>Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT)<n>We propose an automatic method to identify "vital layers" within DiT, crucial for image formation.<n>Next, to enable real-image editing, we introduce an improved image inversion method for flow models.
arXiv Detail & Related papers (2024-11-21T18:59:51Z) - Frequency-Aware Guidance for Blind Image Restoration via Diffusion Models [20.898262207229873]
Blind image restoration remains a significant challenge in low-level vision tasks.
Guided diffusion models have achieved promising results in blind image restoration.
We propose a novel frequency-aware guidance loss that can be integrated into various diffusion models in a plug-and-play manner.
arXiv Detail & Related papers (2024-11-19T12:18:16Z) - Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance [0.0]
diffusion models are still challenged by model-induced artifacts and limited stability in image fidelity.
We propose the integration of alias-free resampling layers into the UNet architecture of diffusion models.
Our experimental results on benchmark datasets, including CIFAR-10, MNIST, and MNIST-M, reveal consistent gains in image quality.
arXiv Detail & Related papers (2024-11-14T04:23:28Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
This work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR)
Our base diffusion model is the image restoration SDE (IR-SDE)
arXiv Detail & Related papers (2024-04-15T12:34:21Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
We leverage deep features extracted from a pretrained vision transformer (ViT) to encourage recovered images to be sharp without sacrificing the performance measured by the quantitative metrics.
By comparing the transformer features between recovered image and target one, the pretrained transformer provides high-resolution blur-sensitive semantic information.
One regards the features as vectors and computes the discrepancy between representations extracted from recovered image and target one in Euclidean space.
arXiv Detail & Related papers (2023-03-24T14:14:25Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.