Radiomic fingerprints for knee MR images assessment
- URL: http://arxiv.org/abs/2506.20306v1
- Date: Wed, 25 Jun 2025 10:39:22 GMT
- Title: Radiomic fingerprints for knee MR images assessment
- Authors: Yaxi Chen, Simin Ni, Shaheer U. Saeed, Aleksandra Ivanova, Rikin Hargunani, Jie Huang, Chaozong Liu, Yipeng Hu,
- Abstract summary: Existing radiomic approaches use a fixed set of radiomic features, selected at the population level and applied uniformly to all patients.<n>While interpretable, these signatures are often too constrained to represent individual pathological variations.<n>We propose a novel radiomic fingerprint framework, in which a radiomic feature set (the fingerprint) is dynamically constructed for each patient, selected by a DL model.<n>Unlike the existing radiomic signatures, our fingerprints are derived on a per-patient basis by predicting the feature relevance in a large radiomic feature pool, and selecting only those that are predictive of clinical conditions for individual patients.
- Score: 39.11295870085984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate interpretation of knee MRI scans relies on expert clinical judgment, often with high variability and limited scalability. Existing radiomic approaches use a fixed set of radiomic features (the signature), selected at the population level and applied uniformly to all patients. While interpretable, these signatures are often too constrained to represent individual pathological variations. As a result, conventional radiomic-based approaches are found to be limited in performance, compared with recent end-to-end deep learning (DL) alternatives without using interpretable radiomic features. We argue that the individual-agnostic nature in current radiomic selection is not central to its intepretability, but is responsible for the poor generalization in our application. Here, we propose a novel radiomic fingerprint framework, in which a radiomic feature set (the fingerprint) is dynamically constructed for each patient, selected by a DL model. Unlike the existing radiomic signatures, our fingerprints are derived on a per-patient basis by predicting the feature relevance in a large radiomic feature pool, and selecting only those that are predictive of clinical conditions for individual patients. The radiomic-selecting model is trained simultaneously with a low-dimensional (considered relatively explainable) logistic regression for downstream classification. We validate our methods across multiple diagnostic tasks including general knee abnormalities, anterior cruciate ligament (ACL) tears, and meniscus tears, demonstrating comparable or superior diagnostic accuracy relative to state-of-the-art end-to-end DL models. More importantly, we show that the interpretability inherent in our approach facilitates meaningful clinical insights and potential biomarker discovery, with detailed discussion, quantitative and qualitative analysis of real-world clinical cases to evidence these advantages.
Related papers
- Clinically Grounded Agent-based Report Evaluation: An Interpretable Metric for Radiology Report Generation [32.410641778559544]
ICARE (Interpretable and Clinically-grounded Agent-based Report Evaluation) is an interpretable evaluation framework.<n>Two agents, each with either the ground-truth or generated report, generate clinically meaningful questions and quiz each other.<n>By linking scores to question-answer pairs, ICARE enables transparent, and interpretable assessment.
arXiv Detail & Related papers (2025-08-04T18:28:03Z) - Benchmarking and Explaining Deep Learning Cortical Lesion MRI Segmentation in Multiple Sclerosis [28.192924379673862]
Cortical lesions (CLs) have emerged as valuable biomarkers in multiple sclerosis (MS)<n>We propose a comprehensive benchmark of CL detection and segmentation in MRI.<n>We rely on the self-configuring nnU-Net framework, designed for medical imaging segmentation, and propose adaptations tailored to the improved CL detection.
arXiv Detail & Related papers (2025-07-16T09:56:11Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction [5.736781475109306]
Lung cancer remains one of the leading causes of cancer-related mortality worldwide.<n>In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from CT images.<n>We introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics.
arXiv Detail & Related papers (2025-03-26T15:56:48Z) - Patient-specific radiomic feature selection with reconstructed healthy persona of knee MR images [39.11295870085984]
Classical radiomic features have been designed to describe image appearance and intensity patterns.<n>Lower dimensional parametric models that use such radiomic features offer enhanced interpretability but lower comparative performance in clinical tasks.<n>We propose an approach where a standard logistic regression model performance is substantially improved by learning to select radiomic features for individual patients.
arXiv Detail & Related papers (2025-03-17T12:55:43Z) - Anatomy-Guided Radiology Report Generation with Pathology-Aware Regional Prompts [3.1019279528120363]
Radiology reporting generative AI holds significant potential to alleviate clinical workloads and streamline medical care.
Existing systems often fall short due to their reliance on fixed size, patch-level image features and insufficient incorporation of pathological information.
We propose an innovative approach that leverages pathology-aware regional prompts to explicitly integrate anatomical and pathological information of various scales.
arXiv Detail & Related papers (2024-11-16T12:36:20Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.