When Servers Meet Species: A Fab-to-Grave Lens on Computing's Biodiversity Impact
- URL: http://arxiv.org/abs/2506.20442v3
- Date: Mon, 30 Jun 2025 10:08:23 GMT
- Title: When Servers Meet Species: A Fab-to-Grave Lens on Computing's Biodiversity Impact
- Authors: Tianyao Shi, Ritbik Kumar, Inez Hua, Yi Ding,
- Abstract summary: This paper presents the first end-to-end analysis of biodiversity impact from computing systems.<n>We introduce two new metrics--Embodied Biodiversity Index (EBI) and Operational Biodiversity Index (OBI)--to quantify biodiversity impact across the lifecycle.<n>We present FABRIC, a modeling framework that links computing workloads to biodiversity impacts.
- Score: 2.664633466640672
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biodiversity loss is a critical planetary boundary, yet its connection to computing remains largely unexamined. Prior sustainability efforts in computing have focused on carbon and water, overlooking biodiversity due to the lack of appropriate metrics and modeling frameworks. This paper presents the first end-to-end analysis of biodiversity impact from computing systems. We introduce two new metrics--Embodied Biodiversity Index (EBI) and Operational Biodiversity Index (OBI)--to quantify biodiversity impact across the lifecycle, and present FABRIC, a modeling framework that links computing workloads to biodiversity impacts. Our evaluation highlights the need to consider biodiversity alongside carbon and water in sustainable computing design and optimization. The code is available at https://github.com/TianyaoShi/FABRIC.
Related papers
- BioAnalyst: A Foundation Model for Biodiversity [0.565395466029518]
We introduce BioAnalyst, the first Foundation Model tailored for biodiversity analysis and conservation planning.<n>BioAnalyst employs a transformer-based architecture, pretrained on extensive multi-modal datasets.<n>We evaluate the model's performance on two downstream use cases, demonstrating its generalisability compared to existing methods.
arXiv Detail & Related papers (2025-07-11T23:56:08Z) - BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning [51.341003735575335]
We find emergent behaviors in biological vision models via large-scale contrastive vision-language training.<n>We train BioCLIP 2 on TreeOfLife-200M to distinguish different species.<n>We identify emergent properties in the learned embedding space of BioCLIP 2.
arXiv Detail & Related papers (2025-05-29T17:48:20Z) - CrypticBio: A Large Multimodal Dataset for Visually Confusing Biodiversity [3.73232466691291]
We present CrypticBio, the largest publicly available dataset of visually confusing species.<n>Criticized from real-world trends in species misidentification among community annotators of iNaturalist, CrypticBio contains 52K unique cryptic groups spanning 67K species.
arXiv Detail & Related papers (2025-05-16T14:35:56Z) - BioCube: A Multimodal Dataset for Biodiversity Research [0.6749750044497732]
We introduce BioCube, a fine-grained global dataset for ecology and biodiversity research.<n>BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables.<n>All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020.
arXiv Detail & Related papers (2025-05-16T09:46:08Z) - Multimodal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds [47.679877727066206]
Assessment of forest biodiversity is crucial for ecosystem management and conservation.<n>Deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can reliable assess the biodiversity potential of forests.<n>BioVista dataset comprises 44 378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark.
arXiv Detail & Related papers (2025-01-03T09:42:25Z) - CLIBD: Bridging Vision and Genomics for Biodiversity Monitoring at Scale [21.995678534789615]
We use contrastive learning to align images, barcode DNA, and text-based representations of taxonomic labels in a unified embedding space.<n>Our method surpasses previous single-modality approaches in accuracy by over 8% on zero-shot learning tasks.
arXiv Detail & Related papers (2024-05-27T17:57:48Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment.
The dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community.
arXiv Detail & Related papers (2023-07-19T20:54:08Z) - BioGPT: Generative Pre-trained Transformer for Biomedical Text
Generation and Mining [140.61707108174247]
We propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature.
We get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA.
arXiv Detail & Related papers (2022-10-19T07:17:39Z) - Panoptic Feature Fusion Net: A Novel Instance Segmentation Paradigm for
Biomedical and Biological Images [91.41909587856104]
We present a Panoptic Feature Fusion Net (PFFNet) that unifies the semantic and instance features in this work.
Our proposed PFFNet contains a residual attention feature fusion mechanism to incorporate the instance prediction with the semantic features.
It outperforms several state-of-the-art methods on various biomedical and biological datasets.
arXiv Detail & Related papers (2020-02-15T09:19:41Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.