Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
- URL: http://arxiv.org/abs/2506.20525v1
- Date: Wed, 25 Jun 2025 15:10:43 GMT
- Title: Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
- Authors: Christian InternĂ², Andrea Castellani, Sebastian Schmitt, Fabio Stella, Barbara Hammer,
- Abstract summary: We introduce the Synthetic Industrial dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations.<n>We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems.
- Score: 5.500353011037563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.<n>Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.<n>By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.<n>GenAI can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Enhancing Indoor Temperature Forecasting through Synthetic Data in Low-Data Environments [42.8983261737774]
We investigate the efficacy of data augmentation techniques leveraging SoTA AI-based methods for synthetic data generation.
Inspired by practical and experimental motivations, we explore fusion strategies of real and synthetic data to improve forecasting models.
arXiv Detail & Related papers (2024-06-07T12:36:31Z) - A PID-Controlled Non-Negative Tensor Factorization Model for Analyzing Missing Data in NILM [0.0]
Non-Intrusive Load Monitoring (NILM) has become an essential tool in smart grid and energy management.
Traditional imputation methods, such as linear and matrix factorization, struggle with nonlinear relationships and are sensitive to sparse data.
This paper proposes a Proportional-Integral-Derivative (PID) Non-Negative Latent Factorization of tensor (PNLF) model, which dynamically adjusts parameter gradients to improve convergence, stability, and accuracy.
arXiv Detail & Related papers (2024-03-09T10:01:49Z) - Deep Generative Modeling-based Data Augmentation with Demonstration
using the BFBT Benchmark Void Fraction Datasets [3.341975883864341]
This paper explores the applications of deep generative models (DGMs) that have been widely used for image data generation to scientific data augmentation.
Once trained, DGMs can be used to generate synthetic data that are similar to the training data and significantly expand the dataset size.
arXiv Detail & Related papers (2023-08-19T22:19:41Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
We propose a novel variational auto-encoder-generative adversarial network (VAE-GAN) technique for generating time-series data on energy consumption in smart homes.
We tested the online performance of Q-learning-based HEMS with real-world smart home data.
arXiv Detail & Related papers (2023-05-14T22:22:16Z) - Scalable Modular Synthetic Data Generation for Advancing Aerial Autonomy [2.9005223064604078]
We introduce a scalable Aerial Synthetic Data Augmentation (ASDA) framework tailored to aerial autonomy applications.
ASDA extends a central data collection engine with two scriptable pipelines that automatically perform scene and data augmentations.
We demonstrate the effectiveness of our method in automatically generating diverse datasets.
arXiv Detail & Related papers (2022-11-10T04:37:41Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.