Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
- URL: http://arxiv.org/abs/2506.20548v1
- Date: Wed, 25 Jun 2025 15:46:41 GMT
- Title: Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
- Authors: Manyi Li, Renshuai Tao, Yufan Liu, Chuangchuang Tan, Haotong Qin, Bing Li, Yunchao Wei, Yao Zhao,
- Abstract summary: Existing deepfake detection methods overlook the block effects" introduced by compression in Online Social Networks (OSNs)<n>We propose PLADA, a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images.<n>PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection.
- Score: 81.21729774122554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
Related papers
- Evaluating Deepfake Detectors in the Wild [0.0]
We evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection.<n>Our analysis shows that detecting deepfakes still remains a challenging task.<n>Basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance.
arXiv Detail & Related papers (2025-07-29T15:17:00Z) - ODDN: Addressing Unpaired Data Challenges in Open-World Deepfake Detection on Online Social Networks [51.03118447290247]
We propose the open-world deepfake detection network (ODDN), which comprises open-world data aggregation (ODA) and compression-discard gradient correction (CGC)
ODA effectively aggregates correlations between compressed and raw samples through both fine-grained and coarse-grained analyses.
CGC incorporates a compression-discard gradient correction to further enhance performance across diverse compression methods in online social networks (OSNs)
arXiv Detail & Related papers (2024-10-24T12:32:22Z) - Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content.
We introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss.
arXiv Detail & Related papers (2024-06-07T13:37:36Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Robustness and Generalizability of Deepfake Detection: A Study with
Diffusion Models [35.188364409869465]
We present an investigation into how deepfakes are produced and how they can be identified.
The cornerstone of our research is a rich collection of artificial celebrity faces, titled DeepFakeFace.
This data serves as a robust foundation to train and test algorithms designed to spot deepfakes.
arXiv Detail & Related papers (2023-09-05T13:22:41Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.