Lightweight Multi-Frame Integration for Robust YOLO Object Detection in Videos
- URL: http://arxiv.org/abs/2506.20550v1
- Date: Wed, 25 Jun 2025 15:49:07 GMT
- Title: Lightweight Multi-Frame Integration for Robust YOLO Object Detection in Videos
- Authors: Yitong Quan, Benjamin Kiefer, Martin Messmer, Andreas Zell,
- Abstract summary: We propose a highly effective strategy for multi-frame video object detection.<n>Our method improves robustness, especially for lightweight models.<n>We contribute the BOAT360 benchmark dataset to support future research in multi-frame video object detection in challenging real-world scenarios.
- Score: 11.532574301455854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern image-based object detection models, such as YOLOv7, primarily process individual frames independently, thus ignoring valuable temporal context naturally present in videos. Meanwhile, existing video-based detection methods often introduce complex temporal modules, significantly increasing model size and computational complexity. In practical applications such as surveillance and autonomous driving, transient challenges including motion blur, occlusions, and abrupt appearance changes can severely degrade single-frame detection performance. To address these issues, we propose a straightforward yet highly effective strategy: stacking multiple consecutive frames as input to a YOLO-based detector while supervising only the output corresponding to a single target frame. This approach leverages temporal information with minimal modifications to existing architectures, preserving simplicity, computational efficiency, and real-time inference capability. Extensive experiments on the challenging MOT20Det and our BOAT360 datasets demonstrate that our method improves detection robustness, especially for lightweight models, effectively narrowing the gap between compact and heavy detection networks. Additionally, we contribute the BOAT360 benchmark dataset, comprising annotated fisheye video sequences captured from a boat, to support future research in multi-frame video object detection in challenging real-world scenarios.
Related papers
- Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation [49.113131249753714]
We propose an efficient algorithm, termed MTNet, which concurrently exploits motion and temporal cues.<n> MTNet is devised by effectively merging appearance and motion features during the feature extraction process within encoders.<n>We employ a cascade of decoders all feature levels across all feature levels to optimally exploit the derived features.
arXiv Detail & Related papers (2025-01-14T03:15:46Z) - Beyond Boxes: Mask-Guided Spatio-Temporal Feature Aggregation for Video Object Detection [12.417754433715903]
We present FAIM, a new VOD method that enhances temporal Feature Aggregation by leveraging Instance Mask features.<n>Using YOLOX as a base detector, FAIM achieves 87.9% mAP on the ImageNet VID dataset at 33 FPS on a single 2080Ti GPU.
arXiv Detail & Related papers (2024-12-06T10:12:10Z) - Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
Video object detection (VOD) needs to concern the high across-frame variation in object appearance, and the diverse deterioration in some frames.
Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs.
This study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense.
arXiv Detail & Related papers (2024-07-29T02:12:11Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - YOLOV: Making Still Image Object Detectors Great at Video Object
Detection [23.039968987772543]
Video object detection (VID) is challenging because of the high variation of object appearance and the diverse deterioration in some frames.
This work proposes a simple yet effective strategy to address the concerns, which spends marginal overheads with significant gains in accuracy.
Our YOLOX-based model can achieve promising performance (e.g., 87.5% AP50 at over 30 FPS on the ImageNet VID dataset on a single 2080Ti GPU)
arXiv Detail & Related papers (2022-08-20T14:12:06Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
We propose the first joint optimization of detection, tracking and re-identification features for videos.
Our method reaches the state-of-the-art on MOT, it ranks 1st in the UA-DETRAC'18 tracking challenge among online trackers, and 3rd overall.
arXiv Detail & Related papers (2020-05-21T21:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.