SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection
- URL: http://arxiv.org/abs/2506.20599v1
- Date: Wed, 25 Jun 2025 16:38:37 GMT
- Title: SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection
- Authors: Ji Qi, Xinchang Zhang, Dingqi Ye, Yongjia Ruan, Xin Guo, Shaowen Wang, Haifeng Li,
- Abstract summary: Fake remote sensing imagery can lead to erroneous intelligence, fake news, and even conspiracy theories.<n>This paper proposes a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data.<n> Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods.
- Score: 7.054392101839536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images [21.76732661032257]
We propose a novel United Domain Cognition Network (UDCNet) to jointly explore the global-local information in the frequency and spatial domains.
Experimental results demonstrate the superiority of the proposed UDCNet over 24 state-of-the-art models.
arXiv Detail & Related papers (2024-11-11T04:12:27Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
A convolutional neural network (CNN) for camouflaged object detection tends to activate local discriminative regions while ignoring complete object extent.
In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN.
In order to obtain feature maps that could activate full object extent, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed.
arXiv Detail & Related papers (2022-12-16T06:23:58Z) - Multimodal Graph Learning for Deepfake Detection [10.077496841634135]
Existing deepfake detectors face several challenges in achieving robustness and generalization.
We propose a novel framework, namely Multimodal Graph Learning (MGL), that leverages information from multiple modalities.
Our proposed method aims to effectively identify and utilize distinguishing features for deepfake detection.
arXiv Detail & Related papers (2022-09-12T17:17:49Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
We propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection.
F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone.
The BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales.
arXiv Detail & Related papers (2022-09-01T15:50:58Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - Fake Visual Content Detection Using Two-Stream Convolutional Neural
Networks [14.781702606707642]
We propose a two-stream convolutional neural network architecture called TwoStreamNet to complement frequency and spatial domain features.
The proposed detector has demonstrated significant performance improvement compared to the current state-of-the-art fake content detectors.
arXiv Detail & Related papers (2021-01-03T18:05:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.