EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
- URL: http://arxiv.org/abs/2506.20652v1
- Date: Wed, 25 Jun 2025 17:50:20 GMT
- Title: EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
- Authors: Roi Bar-On, Dana Cohen-Bar, Daniel Cohen-Or,
- Abstract summary: We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner.<n>In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images.
- Score: 49.5776584729283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner. In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images: an original view and its user-edited counterpart. These image prompts are used to guide an edit-aware flow in the latent space of a pre-trained multi-view diffusion model, allowing the edit to be coherently propagated across views. Our method operates in a feed-forward manner, without optimization, and preserves the identity of the original object, in both structure and appearance. We demonstrate its effectiveness across a range of object categories and editing scenarios, achieving high fidelity to the source while requiring no manual masks.
Related papers
- Edit360: 2D Image Edits to 3D Assets from Any Angle [23.798967420408484]
Edit360 is a tuning-free framework that extends 2D modifications to consistent 3D editing.<n>It selects anchor views for 2D modifications and propagates edits across the entire 360-degree range.<n>The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets.
arXiv Detail & Related papers (2025-06-12T09:09:28Z) - PrEditor3D: Fast and Precise 3D Shape Editing [100.09112677669376]
We propose a training-free approach to 3D editing that enables the editing of a single shape within a few minutes.<n>The edited 3D mesh aligns well with the prompts, and remains identical for regions that are not intended to be altered.
arXiv Detail & Related papers (2024-12-09T15:44:47Z) - Unified Editing of Panorama, 3D Scenes, and Videos Through Disentangled Self-Attention Injection [60.47731445033151]
We propose a novel unified editing framework that combines the strengths of both approaches by utilizing only a basic 2D image text-to-image (T2I) diffusion model.
Experimental results confirm that our method enables editing across diverse modalities including 3D scenes, videos, and panorama images.
arXiv Detail & Related papers (2024-05-27T04:44:36Z) - An Item is Worth a Prompt: Versatile Image Editing with Disentangled Control [21.624984690721842]
D-Edit is a framework to disentangle the comprehensive image-prompt interaction into several item-prompt interactions.<n>It is based on pretrained diffusion models with cross-attention layers disentangled and adopts a two-step optimization to build item-prompt associations.<n>We demonstrate state-of-the-art results in four types of editing operations including image-based, text-based, mask-based editing, and item removal.
arXiv Detail & Related papers (2024-03-07T20:06:29Z) - Real-time 3D-aware Portrait Editing from a Single Image [111.27169315556444]
3DPE can edit a face image following given prompts, like reference images or text descriptions.
A lightweight module is distilled from a 3D portrait generator and a text-to-image model.
arXiv Detail & Related papers (2024-02-21T18:36:26Z) - Editing 3D Scenes via Text Prompts without Retraining [80.57814031701744]
DN2N is a text-driven editing method that allows for the direct acquisition of a NeRF model with universal editing capabilities.
Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images.
Our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer.
arXiv Detail & Related papers (2023-09-10T02:31:50Z) - SINE: Semantic-driven Image-based NeRF Editing with Prior-guided Editing
Field [37.8162035179377]
We present a novel semantic-driven NeRF editing approach, which enables users to edit a neural radiance field with a single image.
To achieve this goal, we propose a prior-guided editing field to encode fine-grained geometric and texture editing in 3D space.
Our method achieves photo-realistic 3D editing using only a single edited image, pushing the bound of semantic-driven editing in 3D real-world scenes.
arXiv Detail & Related papers (2023-03-23T13:58:11Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.