Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
- URL: http://arxiv.org/abs/2506.20966v1
- Date: Thu, 26 Jun 2025 03:06:57 GMT
- Title: Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
- Authors: Tian-Yu Xiang, Ao-Qun Jin, Xiao-Hu Zhou, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Sheng-Bin Duan, Fu-Chao Xie, Wen-Kai Wang, Si-Cheng Wang, Ling-Yun Li, Tian Tu, Zeng-Guang Hou,
- Abstract summary: Vision-language-action (VLA) models extend vision-language models (VLM)<n>This paper reviews post-training strategies for VLA models through the lens of human motor learning.
- Score: 11.678954304546988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)
Related papers
- Unified Vision-Language-Action Model [86.68814779303429]
We present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences.<n>Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge.<n>We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
arXiv Detail & Related papers (2025-06-24T17:59:57Z) - From Generation to Generalization: Emergent Few-Shot Learning in Video Diffusion Models [65.0487600936788]
Video Diffusion Models (VDMs) have emerged as powerful generative tools capable of synthesizing high-quality content.<n>We argue that VDMs naturally push to probe structured representations and an implicit understanding of the visual world.<n>Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input- sequences.
arXiv Detail & Related papers (2025-06-08T20:52:34Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - Improving Vision-Language-Action Model with Online Reinforcement Learning [17.043068379668842]
Recent studies have successfully integrated large vision-language models into low-level robotic control by supervised fine-tuning.<n>We propose iRe-VLA framework, which iterates between Reinforcement Learning and Supervised Learning to effectively improve VLA models.
arXiv Detail & Related papers (2025-01-28T02:53:48Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - Benchmarking Vision, Language, & Action Models on Robotic Learning Tasks [20.93006455952299]
Vision-language-action (VLA) models represent a promising direction for developing general-purpose robotic systems.<n>We present a comprehensive evaluation framework and benchmark suite for assessing VLA models.
arXiv Detail & Related papers (2024-11-04T18:01:34Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
We study the visual generalization capabilities of three existing robotic foundation models.<n>Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios.<n>We propose a gradual backbone reversal approach founded on model merging.
arXiv Detail & Related papers (2024-09-23T17:47:59Z) - VLATest: Testing and Evaluating Vision-Language-Action Models for Robotic Manipulation [7.8735930411335895]
We present VLATest, a fuzzing framework designed to generate robotic manipulation scenes for testing VLA models.<n>Based on VLATest, we conducted an empirical study to assess the performance of seven representative VLA models.
arXiv Detail & Related papers (2024-09-19T16:33:00Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.<n>Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.<n>We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - A Survey on Vision-Language-Action Models for Embodied AI [71.16123093739932]
Embodied AI is widely recognized as a key element of artificial general intelligence.<n>A new category of multimodal models has emerged to address language-conditioned robotic tasks in embodied AI.<n>We present the first survey on vision-language-action models for embodied AI.
arXiv Detail & Related papers (2024-05-23T01:43:54Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.