RecCoT: Enhancing Recommendation via Chain-of-Thought
- URL: http://arxiv.org/abs/2506.21032v1
- Date: Thu, 26 Jun 2025 06:14:42 GMT
- Title: RecCoT: Enhancing Recommendation via Chain-of-Thought
- Authors: Shuo Yang, Jiangxia Cao, Haipeng Li, Yuqi Mao, Shuchao Pang,
- Abstract summary: Modern recommendation systems learn user-item collaborative signals from implicit feedback signals.<n>The RecSys struggles to understand why a user likes or dislikes certain items.<n>Most of these methods focus on predicting the ratings of reviews, but do not provide a human-understandable explanation.
- Score: 8.498363104906904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications, users always interact with items in multiple aspects, such as through implicit binary feedback (e.g., clicks, dislikes, long views) and explicit feedback (e.g., comments, reviews). Modern recommendation systems (RecSys) learn user-item collaborative signals from these implicit feedback signals as a large-scale binary data-streaming, subsequently recommending other highly similar items based on users' personalized historical interactions. However, from this collaborative-connection perspective, the RecSys does not focus on the actual content of the items themselves but instead prioritizes higher-probability signals of behavioral co-occurrence among items. Consequently, under this binary learning paradigm, the RecSys struggles to understand why a user likes or dislikes certain items. To alleviate it, some works attempt to utilize the content-based reviews to capture the semantic knowledge to enhance recommender models. However, most of these methods focus on predicting the ratings of reviews, but do not provide a human-understandable explanation.
Related papers
- User Feedback in Human-LLM Dialogues: A Lens to Understand Users But Noisy as a Learning Signal [58.43749783815486]
We study implicit user feedback in two user-LM interaction datasets.<n>We find that the contents of user feedback can improve model performance in short human-designed questions.<n>We also find that the usefulness of user feedback is largely tied to the quality of the user's initial prompt.
arXiv Detail & Related papers (2025-07-30T23:33:29Z) - ConsRec: Denoising Sequential Recommendation through User-Consistent Preference Modeling [33.281526528724335]
We propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec)<n>ConsRec captures stable user preferences and filters noisy items from interaction histories.<n>Results show ConsRec achieves a 13% improvement over baseline recommendation models.
arXiv Detail & Related papers (2025-05-28T08:55:13Z) - Sentiment-Aware Recommendation Systems in E-Commerce: A Review from a Natural Language Processing Perspective [0.0]
This paper comprehensively reviews sentiment-aware recommendation systems from a natural language processing perspective.<n>It highlights the benefits of integrating sentiment analysis into e-commerce recommenders to enhance prediction accuracy and explainability.<n>Key challenges include handling noisy or sarcastic text, dynamic user preferences, and bias mitigation.
arXiv Detail & Related papers (2025-05-03T19:36:27Z) - A Contrastive Framework with User, Item and Review Alignment for Recommendation [25.76462243743591]
We introduce a Review-centric Contrastive Alignment Framework for Recommendation (ReCAFR)<n>ReCAFR incorporates reviews into the core learning process, ensuring alignment among user, item, and review representations.<n>Specifically, we leverage two self-supervised contrastive strategies that exploit review-based augmentation to alleviate sparsity.
arXiv Detail & Related papers (2025-01-21T08:21:45Z) - Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
We test for user strategization by conducting a lab experiment and survey.
We find strong evidence of strategization across outcome metrics, including participants' dwell time and use of "likes"
Our findings suggest that platforms cannot ignore the effect of their algorithms on user behavior.
arXiv Detail & Related papers (2024-05-09T07:36:08Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Explainable Recommender with Geometric Information Bottleneck [25.703872435370585]
We propose to incorporate a geometric prior learnt from user-item interactions into a variational network.
Latent factors from an individual user-item pair can be used for both recommendation and explanation generation.
Experimental results on three e-commerce datasets show that our model significantly improves the interpretability of a variational recommender.
arXiv Detail & Related papers (2023-05-09T10:38:36Z) - Positive, Negative and Neutral: Modeling Implicit Feedback in
Session-based News Recommendation [13.905580921329717]
We propose a comprehensive framework to model user behaviors through positive feedback and negative feedback.
The framework implicitly models the user using their session start time, and the article using its initial publishing time.
Empirical evaluation on three real-world news datasets shows the framework's promising performance.
arXiv Detail & Related papers (2022-05-12T12:47:06Z) - Learning Robust Recommender from Noisy Implicit Feedback [140.7090392887355]
We propose a new training strategy named Adaptive Denoising Training (ADT)
ADT adaptively prunes the noisy interactions by two paradigms (i.e., Truncated Loss and Reweighted Loss)
We consider extra feedback (e.g., rating) as auxiliary signal and propose three strategies to incorporate extra feedback into ADT.
arXiv Detail & Related papers (2021-12-02T12:12:02Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Partial Bandit and Semi-Bandit: Making the Most Out of Scarce Users'
Feedback [62.997667081978825]
We present a novel approach for considering user feedback and evaluate it using three distinct strategies.
Despite a limited number of feedbacks returned by users (as low as 20% of the total), our approach obtains similar results to those of state of the art approaches.
arXiv Detail & Related papers (2020-09-16T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.