MT2-CSD: A New Dataset and Multi-Semantic Knowledge Fusion Method for Conversational Stance Detection
- URL: http://arxiv.org/abs/2506.21053v2
- Date: Fri, 04 Jul 2025 06:30:32 GMT
- Title: MT2-CSD: A New Dataset and Multi-Semantic Knowledge Fusion Method for Conversational Stance Detection
- Authors: Fuqiang Niu, Genan Dai, Yisha Lu, Jiayu Liao, Xiang Li, Hu Huang, Bowen Zhang,
- Abstract summary: We introduce MT2-CSD, a comprehensive dataset for multi-target, multi-turn conversational stance detection.<n>To address these challenges, we propose the Large Language model enhanced Conversational Attention Network (LLM-CRAN)
- Score: 5.892386683874131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of contemporary social media, automatic stance detection is pivotal for opinion mining, as it synthesizes and examines user perspectives on contentious topics to uncover prevailing trends and sentiments. Traditional stance detection research often targets individual instances, thereby limiting its capacity to model multi-party discussions typical in real social media scenarios. This shortcoming largely stems from the scarcity of datasets that authentically capture the dynamics of social media interactions, hindering advancements in conversational stance detection. In this paper, we introduce MT2-CSD, a comprehensive dataset for multi-target, multi-turn conversational stance detection. To the best of our knowledge, MT2-CSD is the largest dataset available for this purpose, comprising 24,457 annotated instances and exhibiting the greatest conversational depth, thereby presenting new challenges for stance detection. To address these challenges, we propose the Large Language model enhanced Conversational Relational Attention Network (LLM-CRAN), which exploits the reasoning capabilities of LLMs to improve conversational understanding. We conduct extensive experiments to evaluate the efficacy of LLM-CRAN on the MT2-CSD dataset. The experimental results indicate that LLM-CRAN significantly outperforms strong baseline models in the task of conversational stance detection.
Related papers
- C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations [23.11314388159895]
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries.<n>Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue.
arXiv Detail & Related papers (2025-07-30T17:56:23Z) - REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
We introduce REALTALK, a 21-day corpus of authentic messaging app dialogues.<n>We compare EI attributes and persona consistency to understand the challenges posed by real-world dialogues.<n>Our findings reveal that models struggle to simulate a user solely from dialogue history, while fine-tuning on specific user chats improves persona emulation.
arXiv Detail & Related papers (2025-02-18T20:29:01Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Multimodal Multi-turn Conversation Stance Detection: A Challenge Dataset and Effective Model [9.413870182630362]
We introduce a new multimodal multi-turn conversational stance detection dataset (called MmMtCSD)
We propose a novel multimodal large language model stance detection framework (MLLM-SD), that learns joint stance representations from textual and visual modalities.
Experiments on MmMtCSD show state-of-the-art performance of our proposed MLLM-SD approach for multimodal stance detection.
arXiv Detail & Related papers (2024-09-01T03:16:30Z) - AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
We propose a novel framework called AIMDiT to solve the problem of multimodal fusion of deep features.
Experiments conducted using our AIMDiT framework on the public benchmark dataset MELD reveal 2.34% and 2.87% improvements in terms of the Acc-7 and w-F1 metrics.
arXiv Detail & Related papers (2024-04-12T11:31:18Z) - A Challenge Dataset and Effective Models for Conversational Stance Detection [26.208989232347058]
We introduce a new multi-turn conversation stance detection dataset (called textbfMT-CSD)
We propose a global-local attention network (textbfGLAN) to address both long and short-range dependencies inherent in conversational data.
Our dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection.
arXiv Detail & Related papers (2024-03-17T08:51:01Z) - MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations [20.496487925251277]
MIntRec2.0 is a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations.
It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes.
We provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research.
arXiv Detail & Related papers (2024-03-16T15:14:15Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - Stance Detection with Collaborative Role-Infused LLM-Based Agents [39.75103353173015]
Stance detection is vital for content analysis in web and social media research.
However, stance detection requires advanced reasoning to infer authors' implicit viewpoints.
We design a three-stage framework in which LLMs are designated distinct roles.
We achieve state-of-the-art performance across multiple datasets.
arXiv Detail & Related papers (2023-10-16T14:46:52Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents [70.08842857515141]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.<n>Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
We present models for effective Ambiguity Detection and Coreference Resolution in Conversational AI.
Specifically, we use TOD-BERT and LXMERT based models, compare them to a number of baselines and provide ablation experiments.
Our results show that (1) language models are able to exploit correlations in the data to detect ambiguity; and (2) unimodal coreference resolution models can avoid the need for a vision component.
arXiv Detail & Related papers (2022-02-25T12:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.