PoseMaster: Generating 3D Characters in Arbitrary Poses from a Single Image
- URL: http://arxiv.org/abs/2506.21076v1
- Date: Thu, 26 Jun 2025 08:03:14 GMT
- Title: PoseMaster: Generating 3D Characters in Arbitrary Poses from a Single Image
- Authors: Hongyu Yan, Kunming Luo, Weiyu Li, Yixun Liang, Shengming Li, Jingwei Huang, Chunchao Guo, Ping Tan,
- Abstract summary: We propose PoseMaster, an end-to-end controllable 3D character generation framework.<n>Specifically, we unify pose transformation and 3D character generation into a flow-based 3D native generation framework.<n>Considering the specificity of multi-condition control, we randomly empty the pose condition and the image condition during training to improve the effectiveness and generalizability of pose control.
- Score: 37.332231168919705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D characters play a crucial role in our daily entertainment. To improve the efficiency of 3D character modeling, recent image-based methods use two separate models to achieve pose standardization and 3D reconstruction of the A-pose character. However, these methods are prone to generating distorted and degraded images in the pose standardization stage due to self-occlusion and viewpoints, which further affects the geometric quality of the subsequent reconstruction process. To tackle these problems, we propose PoseMaster, an end-to-end controllable 3D character generation framework. Specifically, we unify pose transformation and 3D character generation into a flow-based 3D native generation framework. To achieve accurate arbitrary-pose control, we propose to leverage the 3D body bones existing in the skeleton of an animatable character as the pose condition. Furthermore, considering the specificity of multi-condition control, we randomly empty the pose condition and the image condition during training to improve the effectiveness and generalizability of pose control. Finally, we create a high-quality pose-control dataset derived from realistic character animation data to make the model learning the implicit relationships between skeleton and skinning weights. Extensive experiments show that PoseMaster outperforms current state-of-the-art techniques in both qualitative and quantitative evaluations for A-pose character generation while demonstrating its powerful ability to achieve precise control for arbitrary poses.
Related papers
- Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters [86.13319549186959]
We present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second.<n>Our framework generates high-quality blend weights, bones, and pose transformations.<n>Compared to existing methods, our approach demonstrates significant improvements in both quality and speed.
arXiv Detail & Related papers (2024-11-27T10:18:06Z) - CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Canonicalization [27.55341255800119]
We present CharacterGen, a framework developed to efficiently generate 3D characters.
A transformer-based, generalizable sparse-view reconstruction model is the other core component of our approach.
We have curated a dataset of anime characters, rendered in multiple poses and views, to train and evaluate our model.
arXiv Detail & Related papers (2024-02-27T05:10:59Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcan handle multiple tasks including 3D human pose estimation, 3D pose estimation from cluded 2D pose, and 3D pose completion in a textocbfsingle framework.
We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on MPI-INF-3DHP.
arXiv Detail & Related papers (2023-06-29T10:30:00Z) - Learning 3D-aware Image Synthesis with Unknown Pose Distribution [68.62476998646866]
Existing methods for 3D-aware image synthesis largely depend on the 3D pose distribution pre-estimated on the training set.
This work proposes PoF3D that frees generative radiance fields from the requirements of 3D pose priors.
arXiv Detail & Related papers (2023-01-18T18:47:46Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Unsupervised 3D Human Pose Representation with Viewpoint and Pose
Disentanglement [63.853412753242615]
Learning a good 3D human pose representation is important for human pose related tasks.
We propose a novel Siamese denoising autoencoder to learn a 3D pose representation.
Our approach achieves state-of-the-art performance on two inherently different tasks.
arXiv Detail & Related papers (2020-07-14T14:25:22Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.