Chain-of-Thought Enhanced Shallow Transformers for Wireless Symbol Detection
- URL: http://arxiv.org/abs/2506.21093v1
- Date: Thu, 26 Jun 2025 08:41:45 GMT
- Title: Chain-of-Thought Enhanced Shallow Transformers for Wireless Symbol Detection
- Authors: Li Fan, Peng Wang, Jing Yang, Cong Shen,
- Abstract summary: We propose CHain Of thOught Symbol dEtection (CHOOSE), a CoT-enhanced shallow Transformer framework for wireless symbol detection.<n>By introducing autoregressive latent reasoning steps within the hidden space, CHOOSE significantly improves the reasoning capacity of shallow models.<n> Experimental results demonstrate that our approach outperforms conventional shallow Transformers and achieves performance comparable to that of deep Transformers.
- Score: 14.363929799618283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have shown potential in solving wireless communication problems, particularly via in-context learning (ICL), where models adapt to new tasks through prompts without requiring model updates. However, prior ICL-based Transformer models rely on deep architectures with many layers to achieve satisfactory performance, resulting in substantial storage and computational costs. In this work, we propose CHain Of thOught Symbol dEtection (CHOOSE), a CoT-enhanced shallow Transformer framework for wireless symbol detection. By introducing autoregressive latent reasoning steps within the hidden space, CHOOSE significantly improves the reasoning capacity of shallow models (1-2 layers) without increasing model depth. This design enables lightweight Transformers to achieve detection performance comparable to much deeper models, making them well-suited for deployment on resource-constrained mobile devices. Experimental results demonstrate that our approach outperforms conventional shallow Transformers and achieves performance comparable to that of deep Transformers, while maintaining storage and computational efficiency. This represents a promising direction for implementing Transformer-based algorithms in wireless receivers with limited computational resources.
Related papers
- BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition [10.302458835329539]
We introduce a new method, namely Transformer Re- parameterization, to boost the performance of lightweight Transformer models.
Experimental results show that our proposed method consistently improves the performance of lightweight Transformers, even making them comparable to large models.
arXiv Detail & Related papers (2024-11-14T10:36:19Z) - Shrinking the Giant : Quasi-Weightless Transformers for Low Energy Inference [0.30104001512119216]
Building models with fast and energy-efficient inference is imperative to enable a variety of transformer-based applications.
We build on an approach for learning LUT networks directly via an Extended Finite Difference method.
This allows for a computational and energy-efficient inference solution for transformer-based models.
arXiv Detail & Related papers (2024-11-04T05:38:56Z) - Do Efficient Transformers Really Save Computation? [32.919672616480135]
We focus on the capabilities and limitations of efficient Transformers, specifically the Sparse Transformer and the Linear Transformer.
Our results show that while these models are expressive enough to solve general DP tasks, contrary to expectations, they require a model size that scales with the problem size.
We identify a class of DP problems for which these models can be more efficient than the standard Transformer.
arXiv Detail & Related papers (2024-02-21T17:00:56Z) - SPION: Layer-Wise Sparse Training of Transformer via Convolutional Flood
Filling [1.0128808054306186]
We propose a novel sparsification scheme for the Transformer that integrates convolution filters and the flood filling method.
Our sparsification approach reduces the computational complexity and memory footprint of the Transformer during training.
New SPION achieves up to 3.08X speedup over existing state-of-the-art sparse Transformer models.
arXiv Detail & Related papers (2023-09-22T02:14:46Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
We study the relationship between shortcuts and feature diversity in vision transformer models.
We present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts.
Experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-06-30T09:48:30Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Toward Transformer-Based Object Detection [12.704056181392415]
Vision Transformers can be used as a backbone by a common detection task head to produce competitive COCO results.
ViT-FRCNN demonstrates several known properties associated with transformers, including large pretraining capacity and fast fine-tuning performance.
We view ViT-FRCNN as an important stepping stone toward a pure-transformer solution of complex vision tasks such as object detection.
arXiv Detail & Related papers (2020-12-17T22:33:14Z) - Rewiring the Transformer with Depth-Wise LSTMs [55.50278212605607]
We present a Transformer with depth-wise LSTMs connecting cascading Transformer layers and sub-layers.
Experiments with the 6-layer Transformer show significant BLEU improvements in both WMT 14 English-German / French tasks and the OPUS-100 many-to-many multilingual NMT task.
arXiv Detail & Related papers (2020-07-13T09:19:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.