Counter-propagating spontaneous parametric down-conversion source in lithium niobate on insulator
- URL: http://arxiv.org/abs/2506.21396v1
- Date: Thu, 26 Jun 2025 15:44:16 GMT
- Title: Counter-propagating spontaneous parametric down-conversion source in lithium niobate on insulator
- Authors: Jost Kellner, Alessandra Sabatti, Tristan Kuttner, Robert J. Chapman, Rachel Grange,
- Abstract summary: We show the first integrated counter-propagating photon-pair source on lithium niobate on insulator, where signal and idler photons are generated in opposite directions.<n>The results establish a new route toward integrated, high-purity, and tunable photon sources.
- Score: 40.13294159814764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum photonic technologies rely on the ability to generate, manipulate, and interfere indistinguishable single photons on a scalable platform. Among the various approaches, spontaneous parametric down-conversion (SPDC) remains one of the most widely used methods for generating entangled or pure photon pairs. However most integrated SPDC sources relying on co-propagating geometries have a limited purity of heralded photons, or require lossy filtering. Type-2 SPDC processes can produce pure separable photons but typically suffer from lower efficiency and added complexity due to polarisation management. Here we show the first integrated counter-propagating photon-pair source on lithium niobate on insulator, where signal and idler photons are generated in opposite directions. The counter-propagating geometry leads to spectrally uncorrelated photon pairs without spectral filtering. The joint spectral intensity measurements and unheralded $g^{(2)}$ correlations, yield purities of (92$\pm$3)%. Interference between two independent sources achieves heralded visibilities of (71$\pm$3)%, confirming the scalability of the platform. These results establish a new route toward integrated, high-purity, and tunable photon sources. The demonstrated counter-propagating geometry offers a scalable solution for quantum photonic networks.
Related papers
- Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Second-order correlations and purity of unheralded single photons from
spontaneous parametric down-conversion [1.7396274240172125]
Various quantum technology applications require high-purity single photons with high generation rate.
We present a revised expression to calculate second-order temporal correlation function, $g(2)$ for any fixed time window (bin)
arXiv Detail & Related papers (2022-07-14T15:09:58Z) - Improved heralded single-photon source with a photon-number-resolving
superconducting nanowire detector [0.0]
We herald a single photon at telecommunication wavelength using a superconducting nanowire detector.
We develop an analytical model using a phase-space formalism that encompasses all multiphoton effects and relevant imperfections.
Our experiment, built using fiber-coupled and off-the-shelf components, delineates a path to engineering ideal sources of single photons.
arXiv Detail & Related papers (2021-12-21T18:48:34Z) - Optimised Domain-engineered Crystals for Pure Telecom Photon Sources [101.18253437732933]
We present a telecom-wavelength parametric down-conversion photon source that operates on the achievable limit of domain engineering.
We generate photons from independent sources which achieve two-photon interference visibilities of up to $98.6pm1.1%$ without narrow-band filtering.
arXiv Detail & Related papers (2021-01-20T19:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z) - Optimizing spontaneous parametric down-conversion sources for boson
sampling [0.0]
We show that an optimal trade-off between indistinguishability and losses can always be found for spontaneous downconversion.
A 50-photon scattershot boson-sampling experiment using SPDC sources is possible from a computational complexity point of view.
arXiv Detail & Related papers (2020-01-10T18:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.