STRuCT-LLM: Unifying Tabular and Graph Reasoning with Reinforcement Learning for Semantic Parsing
- URL: http://arxiv.org/abs/2506.21575v1
- Date: Sun, 15 Jun 2025 22:40:36 GMT
- Title: STRuCT-LLM: Unifying Tabular and Graph Reasoning with Reinforcement Learning for Semantic Parsing
- Authors: Josefa Lia Stoisser, Marc Boubnovski Martell, Lawrence Phillips, Casper Hansen, Julien Fauqueur,
- Abstract summary: We propose STRuCT-LLM, a unified framework for training large language models (LLMs)<n>Our approach jointly optimize Text-to-aware and Text-to-Cypher tasks using reinforcement learning (RL) combined with Chain-Thought supervision (CoT)
- Score: 2.8977258426533115
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose STRuCT-LLM, a unified framework for training large language models (LLMs) to perform structured reasoning over both relational and graph-structured data. Our approach jointly optimizes Text-to-SQL and Text-to-Cypher tasks using reinforcement learning (RL) combined with Chain-of-Thought (CoT) supervision. To support fine-grained optimization in graph-based parsing, we introduce a topology-aware reward function based on graph edit distance. Unlike prior work that treats relational and graph formalisms in isolation, STRuCT-LLM leverages shared abstractions between SQL and Cypher to induce cross-formalism transfer, enabling SQL training to improve Cypher performance and vice versa - even without shared schemas. Our largest model (QwQ-32B) achieves substantial relative improvements across tasks: on semantic parsing, Spider improves by 13.5\% and Text2Cypher by 73.1\%. The model also demonstrates strong zero-shot generalization, improving performance on downstream tabular QA (TableBench: 8.5\%) and knowledge graph QA (CR-LT-KGQA: 1.7\%) without any QA-specific supervision. These results demonstrate both the effectiveness of executable queries as scaffolds for structured reasoning and the synergistic benefits of jointly training on SQL and Cypher (code available at https://github.com/bouv/STRuCT-LLM).
Related papers
- Plugging Schema Graph into Multi-Table QA: A Human-Guided Framework for Reducing LLM Reliance [8.304761523814564]
We propose a graph-based framework that leverages human-curated relational knowledge to explicitly encode schema links and join paths.<n>Given a natural language query, our method searches this graph to construct interpretable reasoning chains, aided by pruning and sub-path merging strategies.<n>Experiments on both standard benchmarks and a realistic, large-scale dataset demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2025-06-04T20:21:52Z) - SchemaGraphSQL: Efficient Schema Linking with Pathfinding Graph Algorithms for Text-to-SQL on Large-Scale Databases [1.6544167074080365]
We present a zero-shot, training-free schema linking approach that first constructs a schema graph based on foreign key relations.<n>We apply classical path-finding algorithms and post-processing to identify the optimal sequence of tables and columns that should be joined.<n>Our method achieves state-of-the-art results on the BIRD benchmark, outperforming previous specialized, fine-tuned, and complex multi-step LLM-based approaches.
arXiv Detail & Related papers (2025-05-23T20:42:36Z) - Graph-Reward-SQL: Execution-Free Reinforcement Learning for Text-to-SQL via Graph Matching and Stepwise Reward [15.448159172903138]
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to- tasks.<n>Existing methods often rely on execution-based or LLM-based Bradley-Terry reward models.<n>We propose a novel Text-to- RL fine-tuning framework named Graph-Reward-Reward, which employs the GMNScore outcome reward model.
arXiv Detail & Related papers (2025-05-18T11:53:01Z) - Sparks of Tabular Reasoning via Text2SQL Reinforcement Learning [0.12289361708127876]
This work reframes the Text-to-the-task as a pathway for teaching large language models (LLMs) to reason over and manipulate data.<n>We propose a two-stage framework that teaches a model how to traverse, filter, and aggregate table fields.<n> Empirically, our approach achieves substantial gains on reasoning-intensive datasets such as BIRD and CRT-QA.
arXiv Detail & Related papers (2025-04-23T19:02:04Z) - Knowledge Graph Completion with Relation-Aware Anchor Enhancement [50.50944396454757]
We propose a relation-aware anchor enhanced knowledge graph completion method (RAA-KGC)<n>We first generate anchor entities within the relation-aware neighborhood of the head entity.<n>Then, by pulling the query embedding towards the neighborhoods of the anchors, it is tuned to be more discriminative for target entity matching.
arXiv Detail & Related papers (2025-04-08T15:22:08Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Mixed-modality Representation Learning and Pre-training for Joint
Table-and-Text Retrieval in OpenQA [85.17249272519626]
An optimized OpenQA Table-Text Retriever (OTTeR) is proposed.
We conduct retrieval-centric mixed-modality synthetic pre-training.
OTTeR substantially improves the performance of table-and-text retrieval on the OTT-QA dataset.
arXiv Detail & Related papers (2022-10-11T07:04:39Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
Cross-domain context-dependent semantic parsing is a new focus of research.
We present a dynamic graph framework that effectively modelling contextual utterances, tokens, database schemas, and their complicated interaction as the conversation proceeds.
The proposed framework outperforms all existing models by large margins, achieving new state-of-the-art performance on two large-scale benchmarks.
arXiv Detail & Related papers (2021-01-05T18:11:29Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.