Hierarchical Reasoning Model
- URL: http://arxiv.org/abs/2506.21734v3
- Date: Mon, 04 Aug 2025 08:45:08 GMT
- Title: Hierarchical Reasoning Model
- Authors: Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, Yasin Abbasi Yadkori,
- Abstract summary: HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process.<n>With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples.
- Score: 16.223136644998203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM's potential as a transformative advancement toward universal computation and general-purpose reasoning systems.
Related papers
- STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning [6.282781900938977]
We present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark for complex multi-function understanding and fine-grained execution reasoning.<n>SX-Bench is highly discriminative, even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks.
arXiv Detail & Related papers (2025-08-07T09:28:43Z) - Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models.<n>Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models.<n>We propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs.
arXiv Detail & Related papers (2025-06-06T09:18:56Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition [95.54406667705999]
Pangu Embedded is an efficient Large Language Model (LLM) reasoner developed on Ascend Neural Processing Units (NPUs)<n>It addresses the significant computational costs and inference latency challenges prevalent in existing reasoning-optimized LLMs.<n>It delivers rapid responses and state-of-the-art reasoning quality within a single, unified model architecture.
arXiv Detail & Related papers (2025-05-28T14:03:02Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models [33.547353090281284]
We propose a novel reward model approach called the Hierarchical Reward Model.<n>It evaluates both individual and consecutive reasoning steps at both fine-grained and coarse-grained levels.<n>It excels at assessing multi-step reasoning coherence, especially when flawed steps are later corrected through self-reflection.
arXiv Detail & Related papers (2025-03-16T15:18:40Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory [15.24542569393982]
Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition.<n>We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks.<n>We highlight the need for innovative solutions to achieve reliable multi-step reasoning and compositional task-solving.
arXiv Detail & Related papers (2024-05-26T19:33:23Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent [23.669599662214686]
HyperAgent is a reinforcement learning (RL) algorithm based on the hypermodel framework for exploration in RL.
We demonstrate that HyperAgent offers robust performance in large-scale deep RL benchmarks.
It can solve Deep Sea hard exploration problems with episodes that optimally scale with problem size and exhibits significant efficiency gains in the Atari suite.
arXiv Detail & Related papers (2024-02-05T07:07:30Z) - DynaLay: An Introspective Approach to Dynamic Layer Selection for Deep
Networks [0.0]
We introduce textbfDynaLay, an alternative architecture that features a decision-making agent to adaptively select the most suitable layers for processing each input.
DynaLay reevaluates more complex inputs during inference, adjusting the computational effort to optimize both performance and efficiency.
Our experiments demonstrate that DynaLay achieves accuracy comparable to conventional deep models while significantly reducing computational demands.
arXiv Detail & Related papers (2023-12-20T05:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.