Embodied Domain Adaptation for Object Detection
- URL: http://arxiv.org/abs/2506.21860v1
- Date: Fri, 27 Jun 2025 02:28:19 GMT
- Title: Embodied Domain Adaptation for Object Detection
- Authors: Xiangyu Shi, Yanyuan Qiao, Lingqiao Liu, Feras Dayoub,
- Abstract summary: We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data.<n>Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.
- Score: 23.122536587620523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile robots rely on object detectors for perception and object localization in indoor environments. However, standard closed-set methods struggle to handle the diverse objects and dynamic conditions encountered in real homes and labs. Open-vocabulary object detection (OVOD), driven by Vision Language Models (VLMs), extends beyond fixed labels but still struggles with domain shifts in indoor environments. We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data. We refine pseudo labels via temporal clustering, employ multi-scale threshold fusion, and apply a Mean Teacher framework with contrastive learning. Our Embodied Domain Adaptation for Object Detection (EDAOD) benchmark evaluates adaptation under sequential changes in lighting, layout, and object diversity. Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.
Related papers
- Weakly Supervised Test-Time Domain Adaptation for Object Detection [23.89166024655107]
In some applications such as surveillance, there is usually a human operator overseeing the system's operation.
We propose to involve the operator in test-time domain adaptation to raise the performance of object detection beyond what is achievable by fully automated adaptation.
We show that the proposed method outperforms existing works, demonstrating a great benefit of human-in-the-loop test-time domain adaptation.
arXiv Detail & Related papers (2024-07-08T04:44:42Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties.
With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples.
Thanks to the "divideand-adapt" spirit, DiaNA can handle data with large variations of domain gap.
arXiv Detail & Related papers (2023-07-21T14:37:17Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - AWADA: Attention-Weighted Adversarial Domain Adaptation for Object
Detection [0.0]
AWADA is an Attention-Weighted Adrialversa Domain Adaptation framework for creating a feedback loop between style-transformation and detection task.
We show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.
arXiv Detail & Related papers (2022-08-31T07:20:25Z) - Interactron: Embodied Adaptive Object Detection [18.644357684104662]
We propose Interactron, a method for adaptive object detection in an interactive setting.
Our idea is to continue training during inference and adapt the model at test time without any explicit supervision via interacting with the environment.
arXiv Detail & Related papers (2022-02-01T18:56:14Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - On Universal Black-Box Domain Adaptation [53.7611757926922]
We study an arguably least restrictive setting of domain adaptation in a sense of practical deployment.
Only the interface of source model is available to the target domain, and where the label-space relations between the two domains are allowed to be different and unknown.
We propose to unify them into a self-training framework, regularized by consistency of predictions in local neighborhoods of target samples.
arXiv Detail & Related papers (2021-04-10T02:21:09Z) - Multi-Target Domain Adaptation via Unsupervised Domain Classification
for Weather Invariant Object Detection [1.773576418078547]
The performance of an object detector significantly degrades if the weather of the training images is different from that of test images.
We propose a novel unsupervised domain classification method which can be used to generalize single-target domain adaptation methods to multi-target domains.
We conduct the experiments on Cityscapes dataset and its synthetic variants, i.e. foggy, rainy, and night.
arXiv Detail & Related papers (2021-03-25T16:59:35Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S-temporal action localization is an important problem in computer vision.
We propose an end-to-end unsupervised domain adaptation algorithm.
We show that significant performance gain can be achieved when spatial and temporal features are adapted separately or jointly.
arXiv Detail & Related papers (2020-10-19T04:25:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.