GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
- URL: http://arxiv.org/abs/2506.22049v2
- Date: Thu, 03 Jul 2025 16:54:09 GMT
- Title: GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
- Authors: Tianhao Chen, Xin Xu, Zijing Liu, Pengxiang Li, Xinyuan Song, Ajay Kumar Jaiswal, Fan Zhang, Jishan Hu, Yang Wang, Hao Chen, Shizhe Diao, Shiwei Liu, Yu Li, Lu Yin, Can Yang,
- Abstract summary: We propose Gradient-Preserving Activation Scaling (GPAS), a technique that can be used in combination with existing approaches.<n>GPAS works by scaling down the intermediate activations while keeping their gradients unchanged.<n>Experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains.
- Score: 39.3376897081385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
Related papers
- LARGO: Low-Rank Regulated Gradient Projection for Robust Parameter Efficient Fine-Tuning [39.56217775141507]
Low-rAnk Regulated Gradient Projection (LARGO) algorithm integrates dynamic constraints into low-rank adaptation methods.<n>LARGO achieves state-of-the-art performance across in-domain and out-of-distribution scenarios.
arXiv Detail & Related papers (2025-06-14T08:19:11Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - The Curse of Depth in Large Language Models [28.37870372690079]
We introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs)<n>We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen.<n>Our experimental results, spanning model sizes from 130M to 1B, demonstrate that LayerNorm Scaling significantly enhances LLM pre-training performance compared to Pre-LN.
arXiv Detail & Related papers (2025-02-09T07:03:36Z) - Fast and Slow Gradient Approximation for Binary Neural Network Optimization [11.064044986709733]
hypernetwork based methods utilize neural networks to learn the gradients of non-differentiable quantization functions.<n>We propose a Historical Gradient Storage (HGS) module, which models the historical gradient sequence to generate the first-order momentum required for optimization.<n>We also introduce Layer Recognition Embeddings (LRE) into the hypernetwork, facilitating the generation of layer-specific fine gradients.
arXiv Detail & Related papers (2024-12-16T13:48:40Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.<n>We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.<n>Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Gradient Projection For Continual Parameter-Efficient Tuning [42.800411328615894]
We reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection.
We show that the condition for the gradient can effectively resist forgetting even for large-scale models.
We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets.
arXiv Detail & Related papers (2024-05-22T06:33:48Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.