Universal Retrieval for Multimodal Trajectory Modeling
- URL: http://arxiv.org/abs/2506.22056v1
- Date: Fri, 27 Jun 2025 09:50:38 GMT
- Title: Universal Retrieval for Multimodal Trajectory Modeling
- Authors: Xuan Zhang, Ziyan Jiang, Rui Meng, Yifei Leng, Zhenbang Xiao, Zora Zhiruo Wang, Yanyi Shang, Dehan Kong,
- Abstract summary: Trajectory data holds significant potential for enhancing AI agent capabilities.<n>We introduce Multimodal Trajectory Retrieval, bridging the gap between universal retrieval and agent-centric trajectory modeling.
- Score: 12.160448446091607
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Trajectory data, capturing human actions and environmental states across various modalities, holds significant potential for enhancing AI agent capabilities, particularly in GUI environments. However, how to model the representation of trajectory-level data presents a significant challenge that has not been systematically addressed amid explosive trajectory data growth. In this work, we introduce Multimodal Trajectory Retrieval, bridging the gap between universal retrieval and agent-centric trajectory modeling. We construct the Unified Agent Trajectory Dataset (UATD) from annotated demonstrations and states across diverse real-world scenarios. Based on this, we present GAE-Bench, a benchmark containing a large number of trajectory-based retrieval pairs. In addition, we propose GAE-Retriever, a multimodal retrieval framework that adopts vision-language models and incorporates optimized contrastive learning through a token selection and the GradCache mechanism. Comprehensive evaluations across multiple datasets show that GAE-Retriever consistently outperforms strong baselines in retrieval recall, highlighting its effectiveness in advancing multimodal trajectory retrieval.
Related papers
- Composed Multi-modal Retrieval: A Survey of Approaches and Applications [81.54640206021757]
Composed Multi-modal Retrieval (CMR) emerges as a pivotal next-generation technology.<n>CMR enables users to query images or videos by integrating a reference visual input with textual modifications.<n>This paper provides a comprehensive survey of CMR, covering its fundamental challenges, technical advancements, and applications.
arXiv Detail & Related papers (2025-03-03T09:18:43Z) - Large Language Model as Universal Retriever in Industrial-Scale Recommender System [27.58251380192748]
We show that Large Language Models (LLMs) can function as universal retrievers, capable of handling multiple objectives within a generative retrieval framework.<n>We also introduce matrix decomposition to boost model learnability, discriminability, and transferability.<n>Our Universal Retrieval Model (URM) can adaptively generate a set from computation of tens of millions of candidates.
arXiv Detail & Related papers (2025-02-05T09:56:52Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation framework, combined with Knowledge Graphs, robustly enhances the reasoning capabilities of Large language models.<n>We introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities.<n>Our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments.
arXiv Detail & Related papers (2024-12-10T15:56:03Z) - Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models [27.316692263196277]
MVTraj is a novel multi-view modeling method for trajectory representation learning.
It integrates diverse contextual knowledge, from GPS to road network and points-of-interest to provide a more comprehensive understanding of trajectory data.
Extensive experiments on real-world datasets demonstrate that MVTraj significantly outperforms existing baselines in tasks associated with various spatial views.
arXiv Detail & Related papers (2024-10-17T03:56:12Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
Cross-modal retrieval aims to search for instances, which are semantically related to the query through the interaction of different modal data.<n>Traditional solutions utilize a single-tower or dual-tower framework to explicitly compute the score between queries and candidates.<n>We propose a generative cross-modal retrieval framework (CART) based on coarse-to-fine semantic modeling.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning [98.26836657967162]
textbfAgentOhana aggregates agent trajectories from distinct environments, spanning a wide array of scenarios.
textbfxLAM-v0.1, a large action model tailored for AI agents, demonstrates exceptional performance across various benchmarks.
arXiv Detail & Related papers (2024-02-23T18:56:26Z) - Mutual Information Regularization for Weakly-supervised RGB-D Salient
Object Detection [33.210575826086654]
We present a weakly-supervised RGB-D salient object detection model via supervision.
We focus on effective multimodal representation learning via inter-modal mutual information regularization.
arXiv Detail & Related papers (2023-06-06T12:36:57Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF is a Deep Multimodal Fusion network for the general scenarios on person re-identification task.
Rich semantic knowledge is introduced to assist in feature representation learning during the pre-training stage.
A realistic dataset is adopted to fine-tine the pre-trained model for distribution alignment with real-world.
arXiv Detail & Related papers (2022-11-02T07:42:48Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.