Causal Decompositions of 1D Quantum Cellular Automata
- URL: http://arxiv.org/abs/2506.22219v1
- Date: Fri, 27 Jun 2025 13:36:50 GMT
- Title: Causal Decompositions of 1D Quantum Cellular Automata
- Authors: Augustin Vanrietvelde, Octave Mestoudjian, Pablo Arrighi,
- Abstract summary: We present advances in the research program of causal decompositions.<n>Our results concern one-dimensional Quantum Cellular Automata (1D QCAs)<n>We show that this decomposition can be taken to be translation-invariant QCAs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding quantum theory's causal structure stands out as a major matter, since it radically departs from classical notions of causality. We present advances in the research program of causal decompositions, which investigates the existence of an equivalence between the causal and the compositional structures of unitary channels. Our results concern one-dimensional Quantum Cellular Automata (1D QCAs), i.e. unitary channels over a line of $N$ quantum systems (with or without periodic boundary conditions) that feature a causality radius $r$: a given input cannot causally influence outputs at a distance more than $r$. We prove that, for $N \geq 4r + 1$, 1D QCAs all admit causal decompositions: a unitary channel is a 1D QCA if and only if it can be decomposed into a unitary routed circuit of nearest-neighbour interactions, in which its causal structure is compositionally obvious. This provides the first constructive form of 1D QCAs with causality radius one or more, fully elucidating their structure. In addition, we show that this decomposition can be taken to be translation-invariant for the case of translation-invariant QCAs. Our proof of these results makes use of innovative algebraic techniques, leveraging a new framework for capturing partitions into non-factor sub-C* algebras.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Deterministic identification over channels with finite output: a dimensional perspective on superlinear rates [49.126395046088014]
We consider the problem in its generality for memoryless channels with finite output, but arbitrary input alphabets.<n>Our main findings are that the maximum length of messages thus identifiable scales superlinearly as $R,nlog n$ with the block length $n$.<n>We show that it is sufficient to ensure pairwise reliable distinguishability of the output distributions to construct a DI code.
arXiv Detail & Related papers (2024-02-14T11:59:30Z) - Admissible Causal Structures and Correlations [0.0]
We study limitations on causal structures and correlations imposed by local quantum theory.
For one, we find a necessary graph theoretic criterion--the "siblings-on-cycles" property--for a causal structure to be admissible.
We show that these causal models, in a restricted setting, are indeed consistent.
arXiv Detail & Related papers (2022-10-23T17:33:47Z) - Causal structure in the presence of sectorial constraints, with
application to the quantum switch [0.0]
Existing work on quantum causal structure assumes that one can perform arbitrary operations on systems of interest.
We extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints.
arXiv Detail & Related papers (2022-04-21T17:18:31Z) - A convergent inflation hierarchy for quantum causal structures [1.6758573326215689]
A causal structure is a description of the functional dependencies between random variables.
Inflation techniques associate causal structures to a hierarchy of increasingly strict compatibility tests.
In this paper, we construct a first version of the quantum inflation hierarchy that is provably convergent.
arXiv Detail & Related papers (2021-10-27T18:00:02Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Reassessing the computational advantage of quantum-controlled ordering
of gates [0.0]
In quantum computation, indefinite causal structures decide whether two unitary gates commute or anticommute with a single call to each gate.
In this work, we show that this advantage is smaller than expected.
We present a causal algorithm that solves the only known specific FPP with $O(nlog(n))$ queries and a causal algorithm that solves every FPP with $O(nsqrtn)$ queries.
arXiv Detail & Related papers (2021-02-22T19:00:08Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z) - Causal and compositional structure of unitary transformations [0.0]
We study whether causal structure can be understood in terms of compositional structure of a unitary.
We derive causally faithful extended circuit decompositions for a large class of unitaries.
We hypothesize that every finite-dimensional unitary transformation has a causally faithful extended circuit decomposition.
arXiv Detail & Related papers (2020-01-21T21:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.