4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
- URL: http://arxiv.org/abs/2506.22242v1
- Date: Fri, 27 Jun 2025 14:09:29 GMT
- Title: 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
- Authors: Jiahui Zhang, Yurui Chen, Yueming Xu, Ze Huang, Yanpeng Zhou, Yu-Jie Yuan, Xinyue Cai, Guowei Huang, Xingyue Quan, Hang Xu, Li Zhang,
- Abstract summary: Existing methods typically model the dataset's action distribution using simple observations as inputs.<n>We propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to these sources of chaos.<n>Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
- Score: 31.111439909825627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
Related papers
- cVLA: Towards Efficient Camera-Space VLAs [26.781510474119845]
Vision-Language-Action (VLA) models offer a compelling framework for tackling complex robotic manipulation tasks.<n>We propose a novel VLA approach that leverages the competitive performance of Vision Language Models on 2D images.<n>Our model predicts trajectory waypoints, making it both more efficient to train and robot embodiment.
arXiv Detail & Related papers (2025-07-02T22:56:41Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorld is an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy.<n>Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation.
arXiv Detail & Related papers (2024-12-18T12:10:33Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.