Weakly-Supervised Domain Adaptation with Proportion-Constrained Pseudo-Labeling
- URL: http://arxiv.org/abs/2506.22301v1
- Date: Fri, 27 Jun 2025 15:13:05 GMT
- Title: Weakly-Supervised Domain Adaptation with Proportion-Constrained Pseudo-Labeling
- Authors: Takumi Okuo, Shinnosuke Matsuo, Shota Harada, Kiyohito Tanaka, Ryoma Bise,
- Abstract summary: Domain shift is a significant challenge in machine learning, particularly in medical applications.<n>We propose a weakly-supervised domain adaptation method that leverages class proportion information from the target domain.<n>Our method assigns pseudo-labels to the unlabeled target data based on class proportion, improving performance without the need for additional annotations.
- Score: 3.9146761527401424
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain shift is a significant challenge in machine learning, particularly in medical applications where data distributions differ across institutions due to variations in data collection practices, equipment, and procedures. This can degrade performance when models trained on source domain data are applied to the target domain. Domain adaptation methods have been widely studied to address this issue, but most struggle when class proportions between the source and target domains differ. In this paper, we propose a weakly-supervised domain adaptation method that leverages class proportion information from the target domain, which is often accessible in medical datasets through prior knowledge or statistical reports. Our method assigns pseudo-labels to the unlabeled target data based on class proportion (called proportion-constrained pseudo-labeling), improving performance without the need for additional annotations. Experiments on two endoscopic datasets demonstrate that our method outperforms semi-supervised domain adaptation techniques, even when 5% of the target domain is labeled. Additionally, the experimental results with noisy proportion labels highlight the robustness of our method, further demonstrating its effectiveness in real-world application scenarios.
Related papers
- GenGMM: Generalized Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.9626666671366837]
We introduce the Generalized Gaussian-mixture-based (GenGMM) domain adaptation model, which harnesses the underlying data distribution in both domains.
Experiments demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-21T20:21:09Z) - LE-UDA: Label-efficient unsupervised domain adaptation for medical image
segmentation [24.655779957716558]
We propose a novel and generic framework called Label-Efficient Unsupervised Domain Adaptation"(LE-UDA)
In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA.
Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature.
arXiv Detail & Related papers (2022-12-05T07:47:35Z) - ADeADA: Adaptive Density-aware Active Domain Adaptation for Semantic
Segmentation [23.813813896293876]
We present ADeADA, a general active domain adaptation framework for semantic segmentation.
With less than 5% target domain annotations, our method reaches comparable results with that of full supervision.
arXiv Detail & Related papers (2022-02-14T05:17:38Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
In some target problem domains, there are not many data samples available, which could hinder the learning process.
We propose a weak adaptation learning (WAL) approach that leverages unlabeled data from a similar source domain.
Our experiments demonstrate the effectiveness of our approach in learning an accurate classifier with limited labeled data in the target domain.
arXiv Detail & Related papers (2021-02-15T06:19:25Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks.
We present a novel and effective method to tackle this problem by using effective inter-domain and intra-domain semantic information propagation.
Our source code and pre-trained models will be released soon.
arXiv Detail & Related papers (2020-12-04T14:28:19Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.