A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
- URL: http://arxiv.org/abs/2506.22338v1
- Date: Fri, 27 Jun 2025 15:49:58 GMT
- Title: A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
- Authors: Luigi Russo, Deodato Tapete, Silvia Liberata Ullo, Paolo Gamba,
- Abstract summary: Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts.<n>We introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery.<n>Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM)<n>Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas.
- Score: 1.6070833439280312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts. Although optical satellite imagery is commonly used for disaster mapping, its effectiveness is often hampered by cloud cover or the absence of pre-event acquisitions. To overcome these challenges, we introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery from the Italian Space Agency (ASI) COSMO SkyMed (CSK) constellation, complemented by auxiliary geospatial data. Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM) to improve detection accuracy and contextual interpretation. Unlike existing approaches that depend on pre and post event imagery, our model utilizes only post event data, facilitating rapid deployment in critical scenarios. The framework effectiveness is demonstrated using a new dataset from the 2023 earthquake in Turkey, covering multiple cities with diverse urban settings. Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas. By combining SAR imagery with detailed vulnerability and exposure information, our approach provides reliable and rapid building damage assessments without the dependency from available pre-event data. Moreover, the automated and scalable data generation process ensures the framework's applicability across diverse disaster-affected regions, underscoring its potential to support effective disaster management and recovery efforts. Code and data will be made available upon acceptance of the paper.
Related papers
- BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response [37.37991234180912]
Building damage assessment (BDA) is an essential capability in the aftermath of a disaster to reduce human casualties.<n>Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events.<n>We present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response.
arXiv Detail & Related papers (2025-01-10T14:57:18Z) - Multiclass Post-Earthquake Building Assessment Integrating High-Resolution Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers [0.0]
We introduce a framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure.<n>Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023.
arXiv Detail & Related papers (2024-12-05T23:19:51Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We introduce DAVI (Disaster Assessment with VIsion foundation model), a novel approach that addresses domain disparities and detects structural damage at the building level without requiring ground-truth labels for target regions.<n>DAVI combines task-specific knowledge from a model trained on source regions with task-agnostic knowledge from an image segmentation model to generate pseudo labels indicating potential damage in target regions.<n>It then utilizes a two-stage refinement process, which operate at both pixel and image levels, to accurately identify changes in disaster-affected areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
We leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images.
We build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains.
We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings.
arXiv Detail & Related papers (2024-05-22T16:07:05Z) - QuickQuakeBuildings: Post-earthquake SAR-Optical Dataset for Quick Damaged-building Detection [5.886875818210989]
This letter presents the first dataset dedicated to detecting earthquake-damaged buildings from post-event very high resolution (VHR) Synthetic Aperture Radar (SAR) and optical imagery.
We deliver a dataset of coregistered building footprints and satellite image patches of both SAR and optical data, encompassing more than four thousand buildings.
arXiv Detail & Related papers (2023-12-11T18:19:36Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter.
Using transfer learning and 6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene.
The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey.
arXiv Detail & Related papers (2021-10-12T06:31:54Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Learning from Multimodal and Multitemporal Earth Observation Data for
Building Damage Mapping [17.324397643429638]
We have developed a global multisensor and multitemporal dataset for building damage mapping.
The global dataset contains high-resolution optical imagery and high-to-moderate-resolution multiband SAR data.
We defined a damage mapping framework for the semantic segmentation of damaged buildings based on a deep convolutional neural network algorithm.
arXiv Detail & Related papers (2020-09-14T05:04:19Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.