PromptAug: Fine-grained Conflict Classification Using Data Augmentation
- URL: http://arxiv.org/abs/2506.22491v1
- Date: Tue, 24 Jun 2025 15:33:18 GMT
- Title: PromptAug: Fine-grained Conflict Classification Using Data Augmentation
- Authors: Oliver Warke, Joemon M. Jose, Faegheh Hasibi, Jan Breitsohl,
- Abstract summary: Augmenting conflict-related data poses unique challenges due to Large Language Model guardrails.<n>This paper introduces PromptAug, an innovative LLM-based data augmentation method.<n> PromptAug statistically significant improvements of 2% in both accuracy and F1-score on conflict and emotion datasets.
- Score: 5.053303126748248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the rise of conflicts on social media, effective classification models to detect harmful behaviours are essential. Following the garbage-in-garbage-out maxim, machine learning performance depends heavily on training data quality. However, high-quality labelled data, especially for nuanced tasks like identifying conflict behaviours, is limited, expensive, and difficult to obtain. Additionally, as social media platforms increasingly restrict access to research data, text data augmentation is gaining attention as an alternative to generate training data. Augmenting conflict-related data poses unique challenges due to Large Language Model (LLM) guardrails that prevent generation of offensive content. This paper introduces PromptAug, an innovative LLM-based data augmentation method. PromptAug achieves statistically significant improvements of 2% in both accuracy and F1-score on conflict and emotion datasets. To thoroughly evaluate PromptAug against other data augmentation methods we conduct a robust evaluation using extreme data scarcity scenarios, quantitative diversity analysis and a qualitative thematic analysis. The thematic analysis identifies four problematic patterns in augmented text: Linguistic Fluidity, Humour Ambiguity, Augmented Content Ambiguity, and Augmented Content Misinterpretation. Overall, this work presents PromptAug as an effective method for augmenting data in sensitive tasks like conflict detection, offering a unique, interdisciplinary evaluation grounded in both natural language processing and social science methodology.
Related papers
- DEUCE: Dual-diversity Enhancement and Uncertainty-awareness for Cold-start Active Learning [54.35107462768146]
Cold-start active learning (CSAL) selects valuable instances from an unlabeled dataset for manual annotation.<n>Existing CSAL methods overlook weak classes and hard representative examples, resulting in biased learning.<n>This paper proposes a novel dual-diversity enhancing and uncertainty-aware framework for CSAL.
arXiv Detail & Related papers (2025-02-01T04:00:03Z) - Using Instruction-Tuned Large Language Models to Identify Indicators of Vulnerability in Police Incident Narratives [0.0]
We analyze publicly available text narratives of police-public interactions recorded by Boston Police Department.<n>We compare qualitative coding of instruction tuned large language models (IT-LLMs) against human coders.
arXiv Detail & Related papers (2024-12-16T15:27:37Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
Knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness.<n>State-of-the art approaches to AIGT detection include watermarking, statistical and stylistic analysis, and machine learning classification.<n>We aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios.
arXiv Detail & Related papers (2024-06-21T18:31:49Z) - Data Augmentation for Emotion Detection in Small Imbalanced Text Data [0.0]
One of the challenges is the shortage of available datasets that have been annotated with emotions.
We studied the impact of data augmentation techniques precisely when applied to small imbalanced datasets.
Our experimental results show that using the augmented data when training the classifier model leads to significant improvements.
arXiv Detail & Related papers (2023-10-25T21:29:36Z) - Data Quality in Imitation Learning [15.939363481618738]
In offline learning for robotics, we simply lack internet scale data, and so high quality datasets are a necessity.
This is especially true in imitation learning (IL), a sample efficient paradigm for robot learning using expert demonstrations.
In this work, we take the first step toward formalizing data quality for imitation learning through the lens of distribution shift.
arXiv Detail & Related papers (2023-06-04T18:48:32Z) - Learning towards Selective Data Augmentation for Dialogue Generation [52.540330534137794]
We argue that not all cases are beneficial for augmentation task, and the cases suitable for augmentation should obey the following two attributes.
We propose a Selective Data Augmentation framework (SDA) for the response generation task.
arXiv Detail & Related papers (2023-03-17T01:26:39Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
We propose a text data augmentation approach based on ChatGPT (named AugGPT)
AugGPT rephrases each sentence in the training samples into multiple conceptually similar but semantically different samples.
Experiment results on few-shot learning text classification tasks show the superior performance of the proposed AugGPT approach.
arXiv Detail & Related papers (2023-02-25T06:58:16Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
We develop a data augmentation framework based on ensembling retriever models that captures relevant text segments from unlabeled policy documents.
To improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascade them with noise reduction filter models.
Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%.
arXiv Detail & Related papers (2022-04-19T15:45:23Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
We argue that for complex language understanding tasks, all simple feature correlations are spurious.
We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account.
arXiv Detail & Related papers (2021-04-17T21:34:10Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.