Weakly Supervised Object Segmentation by Background Conditional Divergence
- URL: http://arxiv.org/abs/2506.22505v1
- Date: Wed, 25 Jun 2025 16:46:46 GMT
- Title: Weakly Supervised Object Segmentation by Background Conditional Divergence
- Authors: Hassan Baker, Matthew S. Emigh, Austin J. Brockmeier,
- Abstract summary: We propose a method for training a masking network to perform binary object segmentation using weak supervision.<n>A key step in our method is that the segmented objects can be placed into background-only images.<n>We conduct experiments on side-scan and synthetic aperture sonar in which our approach succeeds.
- Score: 1.5771347525430772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a computer vision task, automatic object segmentation remains challenging in specialized image domains without massive labeled data, such as synthetic aperture sonar images, remote sensing, biomedical imaging, etc. In any domain, obtaining pixel-wise segmentation masks is expensive. In this work, we propose a method for training a masking network to perform binary object segmentation using weak supervision in the form of image-wise presence or absence of an object of interest, which provides less information but may be obtained more quickly from manual or automatic labeling. A key step in our method is that the segmented objects can be placed into background-only images to create realistic, images of the objects with counterfactual backgrounds. To create a contrast between the original and counterfactual background images, we propose to first cluster the background-only images, and then during learning create counterfactual images that blend objects segmented from their original source backgrounds to backgrounds chosen from a targeted cluster. One term in the training loss is the divergence between these counterfactual images and the real object images with backgrounds of the target cluster. The other term is a supervised loss for background-only images. While an adversarial critic could provide the divergence, we use sample-based divergences. We conduct experiments on side-scan and synthetic aperture sonar in which our approach succeeds compared to previous unsupervised segmentation baselines that were only tested on natural images. Furthermore, to show generality we extend our experiments to natural images, obtaining reasonable performance with our method that avoids pretrained networks, generative networks, and adversarial critics. The basecode for this work can be found at \href{GitHub}{https://github.com/bakerhassan/WSOS}.
Related papers
- Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts [0.0]
We propose a patch-based unsupervised image segmentation strategy that bridges advances in unsupervised feature extraction with the algorithmic help of classical graph-based methods.
We show that a simple convolutional neural network, trained to classify image patches, naturally leads to a state-of-the-art fully-convolutional unsupervised pixel-level segmenter.
arXiv Detail & Related papers (2023-11-01T19:59:25Z) - Foreground-Background Separation through Concept Distillation from
Generative Image Foundation Models [6.408114351192012]
We present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions.
We show results on the task of segmenting four different objects (humans, dogs, cars, birds) and a use case scenario in medical image analysis.
arXiv Detail & Related papers (2022-12-29T13:51:54Z) - Learning To Segment Dominant Object Motion From Watching Videos [72.57852930273256]
We envision a simple framework for dominant moving object segmentation that neither requires annotated data to train nor relies on saliency priors or pre-trained optical flow maps.
Inspired by a layered image representation, we introduce a technique to group pixel regions according to their affine parametric motion.
This enables our network to learn segmentation of the dominant foreground object using only RGB image pairs as input for both training and inference.
arXiv Detail & Related papers (2021-11-28T14:51:00Z) - Semantic-Aware Generation for Self-Supervised Visual Representation
Learning [116.5814634936371]
We advocate for Semantic-aware Generation (SaGe) to facilitate richer semantics rather than details to be preserved in the generated image.
SaGe complements the target network with view-specific features and thus alleviates the semantic degradation brought by intensive data augmentations.
We execute SaGe on ImageNet-1K and evaluate the pre-trained models on five downstream tasks including nearest neighbor test, linear classification, and fine-scaled image recognition.
arXiv Detail & Related papers (2021-11-25T16:46:13Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.